Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T01:00:46.259Z Has data issue: false hasContentIssue false

Vortices of ion-drift and related waves

Published online by Cambridge University Press:  13 March 2009

V. P. Lakhin
Affiliation:
Space Research Institute, 84/32 Moscow, U.S.S.R.
S. V. Makurin
Affiliation:
Space Research Institute, 84/32 Moscow, U.S.S.R.
A. B. Mikhailovskii
Affiliation:
Space Research Institute, 84/32 Moscow, U.S.S.R.
O. G. Onishchenko
Affiliation:
Space Research Institute, 84/32 Moscow, U.S.S.R.

Abstract

The problem of vortices of ion-drift and related flute-drift, balloon-drift and drift-Alfvén waves is analysed, taking into account the finiteness of the Larmor radius of the ions. It is shown that the structure of the stationary ion-drift vortices is similar to that of the Alfvén waves. It is found that the stationary ion-drift vortices in a plasma confined in a curvilinear magnetic field are characterized, generally speaking, by two different spatial scales. The role of plasma rotation in the vortex problem is investigated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Horton, W., Liu, J., Meiss, J. D. & Sedlak, J. E. 1986 Phys. Fluids, 29, 1004.Google Scholar
Ivanov, V. N. & Mikhailovskii, A. B. 1985 Sov. J. Plasma Phys. 11, 278.Google Scholar
Lakhin, V. P., Makurin, S. V., Mikhailovskii, A. B. & Onishchenko, O. G. 1987 a J. Plasma Phys. 38, 387.CrossRefGoogle Scholar
Lakhin, V. P., Mikhailovskii, A. B. & Onishchenko, O. G. 1985 Preprint of Institute of Space Res. N 1042.Google Scholar
Lakhin, V. P., Mikhailovskii, A. B. & Onishchenko, O. G. 1987 b Fiz. Plazmy, 13, 188.Google Scholar
Lakhin, V. P., Mikhailovskii, A. B. & Smolyakov, A. I. 1987 c Zh. Eksp. Teor. Fiz. 92, 1601.Google Scholar
Larichev, V. D. & Reznik, G. M. 1976 Dokl. Akad. Nauk SSSR, 231, 1077.Google Scholar
Larichev, U. D. & Reznik, G. M. 1978 Dokl. Earth. Sci. 231, 12.Google Scholar
Liu, J. & Horton, W. 1986 Phys. Fluids, 29, 1828.CrossRefGoogle Scholar
Makino, M., Kamimura, T. & Taniuti, T. 1981 J. Phys. Soc. Japan, 50, 980.CrossRefGoogle Scholar
Meiss, J. D. & Horton, W. 1983 Phys. Fluids, 26, 990.CrossRefGoogle Scholar
Mikhailovskii, A. B. 1974 Theory of Plasma Instabilities, vol. 2. Consultants Bureau.Google Scholar
Mikhailovskii, A. B. 1986 Nonlinear Phenomena in Plasma and Hydrodynamics (ed. Sagdeev, R. Z.), p. 3. Mir.Google Scholar
Mikhailovskii, A. B., Aburdzhaniya, G. D., Onishchenko, O. G. & Churikov, A. P. 1984 a Phys. Lett. 101 A, 236.Google Scholar
Mikhailovskii, A. B., Aburdzhaniya, G. D., Onishchenko, O. G. & Sharapov, S. E. 1984 b Phys. Lett. 100 A, 503.CrossRefGoogle Scholar
Mikhailovskii, A. B., Lakhin, V. P., Aburdzhaniya, G. D., Mikhailovskaya, L. A., Onishchenko, O. G. & Smolyakov, A. I. 1986 Plasma Phys. Contr. Fus. 29, 1.CrossRefGoogle Scholar
Mikhailovskii, A. B., Lakhin, V. P. & Marchenko, V. A. 1985 a Sov. J. Plasma Phys. 11, 370.Google Scholar
Mikhailovskii, A. B., Lakhin, V. P. & Mikhailovskaya, L. A. 1985 b Fiz. Plazmy, 11, 836.Google Scholar
Mikhailovskii, A. B., Lakhin, V. P., Mikhailovskaya, L. A. & Onishchenko, O. G. 1984 c Zh. Eksp. Teor. Fiz. 86, 2061 (Soviet Phys. JETP, 59, 1198).Google Scholar
Pavlenko, V. P. & Petviashvili, V. I. 1983 Fiz. Plasmy, 9, 1034.Google Scholar
Petviashvili, V. I. & Pokhotelov, O. A. 1985 Pis'ma Zh. Eksp. Teor. Fiz. 42, 47.Google Scholar
Rosenbluth, M. N., Krall, N. A. & Rostoker, N. 1962 Nucl. Fusion Suppl. 1, 143.Google Scholar