Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T19:55:22.090Z Has data issue: false hasContentIssue false

Volumetric measurement of the synchronization and desynchronization of the dust acoustic wave with an external modulation

Published online by Cambridge University Press:  14 October 2019

Jeremiah D. Williams*
Affiliation:
Department of Physics, Wittenberg University, Springfield, OH 45504, USA
*
Email address for correspondence: [email protected]

Abstract

A spatio-temporal measurement showing the volumetric nature of the phase synchronization of a naturally occurring dust acoustic wave to an external modulation and the relaxation from the driven wave mode back to the naturally occurring wave mode (phase desynchronization) is presented. It is shown that the phase synchronization and desynchronization occur behind a propagating synchronization/desynchronization front that travels at a slower speed than the phase velocity of the wave and that the speed of this synchronization/desynchronization front decreases with increasing neutral gas pressure. It is also observed that volume of the wave that is synchronous depends on the frequency of the external modulation and the neutral gas pressure.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avinash, K. 2015 Theory of correlation effects in dusty plasmas. Phys. Plasmas 22 (3), 033701.Google Scholar
Chang, M.-C., Teng, L.-W. & Lin, I. 2012 Micro-origin of no-trough trapping in self-excited nonlinear dust acoustic waves. Phys. Rev. E 85 (4), 046410.Google Scholar
Couëdel, L., Zhdanov, S., Nosenko, V., Ivlev, A. V., Thomas, H. M. & Morfill, G. E. 2014 Synchronization of particle motion induced by mode coupling in a two-dimensional plasma crystal. Phys. Rev. E 89 (5), 053108.Google Scholar
Davletov, A. E., Yerimbetova, L. T., Arkhipov, Y. V., Mukhametkarimov, Y. S., Kissan, A. & Tkachenko, I. M. 2018 Dust particles of finite dimensions in complex plasmas: thermodynamics and dust-acoustic wave dispersion. J. Plasma Phys. 84 (4), 4315.Google Scholar
Flanagan, T. M. & Goree, J. 2011 Development of nonlinearity in a growing self-excited dust-density wave. Phys. Plasmas 18 (1), 013705.Google Scholar
Heinrich, J. R., Kim, S. H., Meyer, J. K. & Merlino, R. L. 2011 Experimental quiescent drifting dusty plasmas and temporal dust acoustic wave growth. Phys. Plasmas 18 (11), 113706.Google Scholar
Killer, C. & Melzer, A. 2014 Global coherence of dust density waves. Phys. Plasmas 21 (6), 063703.Google Scholar
Liao, C.-T., Teng, L.-W., Tsai, C.-Y., Io, C.-W. & Lin, I. 2008 Lagrangian–Eulerian micromotion and wave heating in nonlinear self-excited dust-acoustic waves. Phys. Rev. Lett. 100 (18), 185004.Google Scholar
Liu, B., Goree, J., Flanagan, T. M., Sen, A., Tiwari, S. K., Ganguli, G. & Crabtree, C. 2018 Experimental observation of cnoidal waveform of nonlinear dust acoustic waves. Phys. Plasmas 25 (11), 113701.Google Scholar
Maza, D., Vallone, A., Mancini, H. & Boccaletti, S. 2000 Experimental phase synchronization of a chaotic convective flow. Phys. Rev. Lett. 85 (26), 55675570.Google Scholar
Menzel, K. O., Arp, O. & Piel, A. 2011a Chain of coupled van der Pol oscillators as model system for density waves in dusty plasmas. Phys. Rev. E 84 (1), 016405.Google Scholar
Menzel, K. O., Arp, O. & Piel, A. 2011b Frequency clusters and defect structures in nonlinear dust-density waves under microgravity conditions. Phys. Rev. E 83 (1), 016402.Google Scholar
Merlino, RL. 2012 Second-order dust acoustic wave theory. Phys. Scr. 85, 035506.Google Scholar
Merlino, R. L. 2014 25 years of dust acoustic waves. J. Plasma Phys. 80 (6), 773786.Google Scholar
Nosenko, V., Zhdanov, S. K., Kim, S. H., Heinrich, J., Merlino, R. L. & Morfill, G. E. 2009 Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves. Europhys. Lett. 88 (6), 65001.Google Scholar
Pikovsky, A., Rosenblum, M. & Kurths, J. 2001 Synchronization. Cambridge University Press.Google Scholar
Pilch, I., Reichstein, T. & Piel, A. 2009 Synchronization of dust density waves in anodic plasmas. Phys. Plasmas 16 (12), 123709.Google Scholar
Rosenberg, M., Thomas, E. Jr & Merlino, R. L. 2008 A note on dust wave excitation in a plasma with warm dust: comparison with experiment. Phys. Plasmas 15 (7), 073701.Google Scholar
Rosenblum, M. G., Pikovsky, A. S. & Kurths, J. 2004 Synchronization approach to analysis of biological systems. World Scientific 04 (01), L53L62.Google Scholar
Ruhunusiri, W. D. S. & Goree, J. 2012 Synchronization mechanism and Arnold tongues for dust density waves. Phys. Rev. E 85 (4), 046401.Google Scholar
Ruhunusiri, W. D. S. & Goree, J. 2014 Dispersion relations for the dust-acoustic wave under experimental conditions. Phys. Plasmas 21 (5), 053702.Google Scholar
Tadsen, B., Greiner, F., Groth, S. & Piel, A. 2015 Self-excited dust-acoustic waves in an electron-depleted nanodusty plasma. Phys. Plasmas 22 (11), 113701.Google Scholar
Tadsen, B., Greiner, F. & Piel, A. 2017 On the amplitude of dust-density waves in inhomogeneous dusty plasmas. Phys. Plasmas 24 (3), 033704.Google Scholar
Tass, P., Rosenblum, M. G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., Schnitzler, A. & Freund, H. J. 1998 Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys. Rev. Lett. 81 (15), 32913294.Google Scholar
Teng, L.-W., Chang, M.-C., Tseng, Y.-P. & Lin, I. 2009 Wave-particle dynamics of wave breaking in the self-excited dust acoustic wave. Phys. Rev. Lett. 103 (24), 245005.Google Scholar
Thomas, E. Jr 2006 Measurements of spatially growing dust acoustic waves in a DC glow discharge plasma. Phys. Plasmas 13 (4), 042107.Google Scholar
Thomas, E. Jr, Fisher, R. & Merlino, R. L. 2007 Observations of dust acoustic waves driven at high frequencies: finite dust temperature effects and wave interference. Phys. Plasmas 14 (12), 123701.Google Scholar
Ticos, C. M., Epaminondas Rosa, J., Pardo, W. B., Walkenstein, J. A. & Monti, M. 2000 Experimental real-time phase synchronization of a paced chaotic plasma discharge. Phys. Rev. Lett. 85 (14), 29292932.Google Scholar
Trottenberg, T., Block, D. & Piel, A. 2006 Dust confinement and dust-acoustic waves in weakly magnetized anodic plasmas. Phys. Plasmas 13 (4), 042105.Google Scholar
Tsai, Y.-Y., Chang, M.-C. & Lin, I. 2014 Dynamical behaviors of nonlinear dust acoustic waves: from plane waves to dust acoustic wave turbulence. J. Plasma Phys. 80 (6), 809816.Google Scholar
Williams, J. 2013 Spatial evolution of the dust-acoustic wave. Plasma Science, IEEE Transactions on 41 (4), 788793.Google Scholar
Williams, J. 2016 Application of the Hilbert Transform to measure the nonlinearity in the driven dust acoustic wave. Plasma Science, IEEE Transactions on 44, 562567.Google Scholar
Williams, J. 2018a Synchronization of the dust acoustic wave in an RF and a DC discharge plasma. Plasma Science, IEEE Transactions on 46 (4), 806814.Google Scholar
Williams, J. D. 2014a Evolution of frequency clusters in the naturally occurring dust acoustic wave. Phys. Rev. E 89 (2), 023105.Google Scholar
Williams, J. D. 2014b Time-resolved measurement of global synchronization in the dust acoustic wave. Phys. Rev. E 90 (4), 043103.Google Scholar
Williams, J. D. 2018b Volumetric measurement of synchronization of the dust acoustic wave with an external modulation. AIP Conference Proceedings 1925 (1), 020011.Google Scholar
Williams, J. D. & Snipes, E. K. 2010 Measurements of the dust temperature in the dispersion relation of the dust acoustic wave. Plasma Science, IEEE Transactions on 38 (4), 847851.Google Scholar
Yaroshenko, V. V., Khrapak, S. A., Pustylnik, M. Y., Thomas, H. M., Jaiswal, S., Lipaev, A. M., Usachev, A. D., Petrov, O. F. & Fortov, V. E. 2019 Excitation of low-frequency dust density waves in flowing complex plasmas. Phys. Plasmas 26 (5), 053702.Google Scholar