Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T14:12:20.726Z Has data issue: false hasContentIssue false

Unperturbed state and solitary structures in an electron-positron plasma having dust impurity and density inhomogeneity

Published online by Cambridge University Press:  25 March 2014

Hitendra K. Malik*
Affiliation:
Plasma Waves and Particle Acceleration (PWAPA) Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016, India
Rakhee Malik
Affiliation:
Plasma Waves and Particle Acceleration (PWAPA) Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016, India
*
Email address for correspondence: [email protected]

Abstract

An electron–positron pair plasma having dust impurity and density non-uniformity is studied for its unperturbed state and evolution of solitary structures under the effect of either positively charged or negatively charged dust grains. Zeroth-order equations are solved to examine the unperturbed state of the plasma via unperturbed potential φ0, drift velocities of the electrons and positrons (ve0 and vp0), and plasma (positron) density gradient np. It is observed that the dust distribution affects the gradient np significantly, which increases very sharply with a small increment in the dust density gradient nd. With relation to the solitary structures, a modified form of Korteweg–deVries equation (mKdV equation) is realized in the said plasma, which reveals that a tailing structure is associated with the soliton (sech2 structure). This tail is less prominent in the present pair plasma, contrary to the observation made in ordinary plasmas having only ions and electrons. The dust impurity is found to influence the solitary structure much significantly and its presence suppresses the rarefactive solitons, which are generally observed in multi-component species plasmas.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asano, N. 1974 Prog. Theor. Phys. Suppl. 55, 52.Google Scholar
Asano, N. and Taniuti, T. 1969 J. Phys. Soc. Japan 27, 1059.Google Scholar
Asano, N. and Taniuti, T. 1970 J. Phys. Soc. Japan 29, 209.Google Scholar
Berezhiani, V., Tskhakaya, D. D. and Shukla, P. K. 1992 Phys. Rev. A 46, 6608.Google Scholar
Burns, M. L. and Lovelace, R. V. E. 1982 Astrophys. J. 262, 87.Google Scholar
Chauhan, S. S. and Dahiya, R. P. 1997 Phys. Lett. A 234, 108.Google Scholar
Chauhan, S. S., Dahiya, R. P., Yi, S. and Lonngren, K. E. 1997 IEEE Trans. Plasma Sci. 25, 1425.Google Scholar
Chauhan, S. S., Malik, H. K. and Dahiya, R. P. 1996 Phys. Plasmas 3 3932, and references therein.Google Scholar
Cho, S. H., Lee, H. J. and Kim, Y. S. 2000 Phys. Rev. E 61, 4357.Google Scholar
Choi, C. R., Ryu, C. M., Lee, N. C and Lee, D. Y. 2005 Phys. Plasmas 12, 022304.CrossRefGoogle Scholar
Cooney, J. L., Aossey, D. W., Williams, J. E and Lonngren, K. E. 1993 Phys. Rev. E 47, 564.Google Scholar
Das, G. C. and Singh, S. S. 1992 IEEE Trans. Plasma Sci. 20, 13.Google Scholar
de Angelis, U., Formisano, V. and Giordano, M. 1988 J. Plasma Phys. 40, 399.CrossRefGoogle Scholar
Esfandyari-Kalejahi, A., Akbari-Moghanjoughi, M. and Haddadpour, B. 2009a Phys. Plasmas 16, 102 302.Google Scholar
Esfandyari-Kalejahi, A., Kourakis, I., Mehdipoor, M. and Shukla, P. K. 2006 J. Phys. A: Math. Gen. 39, 13817.CrossRefGoogle Scholar
Esfandyari-Kalejahi, A., Mehdipoor, M. and Akbari-Moghanjoughi, M. 2009b Phys. Plasmas 16, 052309.CrossRefGoogle Scholar
Farina, D. and Bulanov, S. V. 2001 Phys. Rev. E 64, 066401.Google Scholar
Gahn, C.et al. 2000 Appl. Phys. Lett. 77, 2662.CrossRefGoogle Scholar
Goldreich, P. and Julian, W. H. 1969 Astrophys. J. 57, 869.Google Scholar
Greaves, R. G. and Surko, C. M. 1995 Phys. Rev. Lett. 75, 3846.Google Scholar
Helander, P. and Ward, D. J. 2003 Phys. Rev. Lett. 90, 135004.CrossRefGoogle Scholar
Higdon, J. C., Lingenfelter, R. E. and Rothschild, R. E. 2009 Astrophys. J. 698, 350.Google Scholar
Iwamoto, N. 1993 Phys. Rev. E 47, 604.Google Scholar
Jyoti and Malik, H. K. 2011 Phys. Plasmas 18, 102116.CrossRefGoogle Scholar
Kourakis, I., Esfandyari-Kalejahi, A., Mehdipoor, M. and Shukla, P. K. 2006 Phys. Plasmas 13, 052117.Google Scholar
Kuehl, H. H. 1983 Phys. Fluids 26, 1577.Google Scholar
Kumar, R., Malik, H. K. and Kawata, S. 2011 Physica D 240, 310.Google Scholar
Lee, N. C. 2011 Phys. Plasmas 18, 062310.Google Scholar
Liang, E. P., Wilks, S. C. and Tabak, M. 1998 Phys. Rev. Lett. 81, 4887.CrossRefGoogle Scholar
Lightman, A. P. 1982 Astrophys. J. 253, 842.Google Scholar
Lightman, A. P. and Zdziarski, A. A. 1987 Astrophys. J. 319, 643.CrossRefGoogle Scholar
Mahmood, S., Mushtaq, A. and Saleem, H. 2003 New J. Phys. 5, 28.1.Google Scholar
Malik, R., Malik, H. K. and Kaushik, S. C. 2012 Phys. Plasmas 19, 032107.Google Scholar
Malik, H. K. and Dahiya, R. P. 1994 Phys. Plasmas 1, 2872.CrossRefGoogle Scholar
Malik, H. K., Tripathi, K. D. and Sharma, S. K. 1998 J. Plasma Phys. 60, 265.Google Scholar
Masood, W., Eliasson, B. and Shukla, P. K. 2010 Phys. Rev. E 81, 066 401.Google Scholar
Michel, F. C. 1982 Rev. Mod. Phys. 54, 1.Google Scholar
Miller, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin: Springer-Verlag, pp. 202.Google Scholar
Mishra, M. K., Chhabra, R. S. and Sharma, S. R. 1994 J. Plasma Phys. 52, 409.CrossRefGoogle Scholar
Misner, W., Thorne, K. S. and Wheeler, J. A. 1973 Gravitation. San Francisco: Freeman, pp. 763.Google Scholar
Mofiz, U. A., Bhuiyan, G. M., Ahmed, Z. and Asgar, M. A. 1998 Phys. Rev. A 38, 5935.Google Scholar
Nakamura, Y. and Sarma, A. 2001 Phys. Plasmas 8, 3921.Google Scholar
Oohara, W. and Hatakeyama, R. 2003a Phys. Rev. Lett. 91, 205005.Google Scholar
Oohara, W. and Hatakeyama, R. 2003b Thin Solid Films 435, 280.Google Scholar
Popel, S. I., Vladimirov, S. V. and Shukla, P. K. 1995 Phys. Plasmas 1, 716.CrossRefGoogle Scholar
Rao, N. N. and Varma, R. K. 1979 Phys. Lett. 70A, 9.Google Scholar
Rees, M. J. 1983 The Very Early Universe (eds. Gibbons, G. W., Hawking, S. W. and Siklas, S.). Cambridge: Cambridge University Press.Google Scholar
Shah, A., Mahmood, S. and Haque, Q. 2010 Phys. Plasmas 17, 112 320.Google Scholar
Shukla, P. K., Jammalamadaka, S. and Senflo, L. 1997 Astron. Astrophys. L 21, 317.Google Scholar
Shukla, P. K. and Marklund, M. 2004 Phys. Scr. T 113, 36.Google Scholar
Singh, S. and Dahiya, R. P. 1989 J. Plasma Phys. 41, 185.Google Scholar
Singh, S. and Dahiya, R. P. 1990 Phys. Fluids B 2, 901.Google Scholar
Singh, K., Kumar, V. and Malik, H. K. 2005a Phys. Plasmas 12, 072302.Google Scholar
Singh, K., Kumar, V. and Malik, H. K. 2005b Phys. Plasmas 12, 052103.Google Scholar
Surko, C. M., Leventhal, M. and Passner, A. 1989 Phys. Rev. Lett. 62, 901.Google Scholar
Tajima, T. and Shibata, K. 1997 Plasma Astrophysics. New York: Addison-Wesley.Google Scholar
Tiwari, R. S., Kaushik, A. and Mishra, M. K. 2007 Phys. Lett. A 4, 335.Google Scholar
Tiwari, R. S. and Mishra, M. K. 2006 Phys. Plasmas 13, 062112.Google Scholar
Treumann, R. A. and Baumjohann, W. 2011 Ann. Geophys. 29, 2219.Google Scholar
Verheest, F. 2000 Waves in Dusty Space Plasmas. Dordrecht: Kluwer Academic.Google Scholar
Weinberg, S. 1972 Gravitation and Cosmology. New York: Wiley.Google Scholar
Yan, C. 1996 Phys. Lett. A 224, 77.Google Scholar
Zank, G. P. and Greaves, R. G. 1995 Phys. Rev. E 51, 6079.Google Scholar
Zdziarski, A. A. 1998 Astrophys. J. 335, 786.Google Scholar