Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T13:16:51.910Z Has data issue: false hasContentIssue false

Two-dimensional nonlinear cylindrical equilibria with reversed magnetic shear and sheared flow

Published online by Cambridge University Press:  12 November 2013

AP Kuiroukidis
Affiliation:
Technological Education Institute of Serres, 62124 Serres, Greece
G. N. Throumoulopoulos*
Affiliation:
Department of Physics, University of Ioannina, Association Euratom-Hellenic Republic, GR 451 10 Ioannina, Greece
*
Email address for correspondence: [email protected]

Abstract

Nonlinear translational symmetric equilibria with up to quartic flux terms in free functions, reversed magnetic shear, and sheared flow are constructed in two ways: (i) quasi-analytically by an ansatz, which reduces the pertinent generalized Grad–Shafranov equation to a set of ordinary differential equations and algebraic constraints which is then solved numerically, and (ii) completely numerically by prescribing analytically a boundary having an X-point. This latter case presented in Sec. 4 is relevant to the International Thermonuclear Experimental Reactor project. The equilibrium characteristics are then examined by means of pressure, safety factor, current density, and electric field. For flows parallel to the magnetic field, the stability of the equilibria constructed is also examined by applying a sufficient condition. It turns out that the equilibrium nonlinearity has a stabilizing impact, which is slightly enhanced by the sheared flow. In addition, the results indicate that the stability is affected by the up-down asymmetry.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apostolaki, D., Throumoulopoulos, G. N. and Tasso, H. 2008 35th EPS Conference on Plasma Physics, Hersonissos, Crete, Greece, 9–13 June 2008, ECA Vol. 32 (ed. Lalousis, P. and Moustaizis, S.). European Physical Society, P-2.057.Google Scholar
Bellan, P. M. 2002 Phys. Plasmas 9, 3050.Google Scholar
Clemente, R. A. and Farengo, R. 1984 Phys. Fluids 27, 776.Google Scholar
de Vries, P. C., Joffrin, E., Brix, M., Challis, C. D., Crombé, K., Esposito, B., Hawkes, N. C., Giroud, C., Hobirk, J., Lönnroth, J., Mantica, P., Strintzi, D., Tala, T., Voitsekhovitch, I. and JET-EFDA Contributors to the Work Programme 2009 Nucl. Fusion 49, 075007.Google Scholar
Fitzpatrick, R. 2011 Nucl. Fusion 51, 053007.Google Scholar
Friedlander, S. and Vishik, M. M. 1995 Chaos 5, 416.CrossRefGoogle Scholar
Gerald, C. and Wheatley, P. 1989 Applied Numerical Analysis. Canada: Addison-Wesley.Google Scholar
Goedbloed, J. P. and Lifschitz, A. 1997 Phys. Plasmas 4, 3544.Google Scholar
Gourdain, P.-A. and Leboeuf, J.-N. 2009 Phys. Plasmas 16, 112506.CrossRefGoogle Scholar
Greene, J. M. 1988 Plasma Phys. Control. Fusion 30, 327.CrossRefGoogle Scholar
Ilgisonis, V. I. and Pozdnyakov, Yu. I. 2002 Plasma Phys. Reports 28, 83.CrossRefGoogle Scholar
Khater, A. H. and Moawad, S. M. 2009 Phys. Plasmas 16, 122506.Google Scholar
Kuiroukidis, A. 2010 Plasma Phys. Control. Fusion 52, 015002.Google Scholar
Kuiroukidis, A. and Throumoulopoulos, G. N. 2012 Phys. Plasmas 19, 022508.Google Scholar
Kuiroukidis, A. and Throumoulopoulos, G. N. 2013 J. Plasma Phys. 79, 257.Google Scholar
Martins, C. G. L., Roberto, M., Caldas, I. L. and Braga, F. L. 2011 Phys. Plasmas 18, 082508.Google Scholar
Martynov, A. A., Medvedev, S. Yu., Villard, L. 2003 Phys. Rev. Lett. 91, 085004.Google Scholar
Mashke, E. K. and Perrin, H. 1984 Phys. Lett. A 102, 106.Google Scholar
Rodrigues, P. and Bizzaro, J. P. S. 2007 Phys. Rev. Lett. 99, 125001.CrossRefGoogle Scholar
Shafer, M. W., McKee, G. R., Austin, M. E., Burrell, K. H., Fonck, R. J. and Schlossberg, D. J. 2009 Phys. Rev. Lett. 103, 075004.Google Scholar
Shi, B. 2011 Nucl. Fusion 51, 023004.Google Scholar
Simintzis, Ch., Throumoulopoulos, G. N., Pantis, G. and Tasso, H. 2001 Phys. Plasmas 8, 2641.Google Scholar
Strumberger, E., Günter, S., Hobirk, J., Igochine, V., Merkl, D., Schwarz, E., Tichmann, C. and the ASDEX Upgrade Team 2004 Nucl. Fusion 44, 464.Google Scholar
Tasso, H. and Throumoulopoulos, G. N. 1998 Phys. Plasmas 5, 2378.Google Scholar
Throumoulopoulos, G. N. and Tasso, H. 1997 Phys. Plasmas 4, 1492.Google Scholar
Throumoulopoulos, G. N. and Tasso, H. 2007 Phys. Plasmas 14, 122104.Google Scholar
Throumoulopoulos, G. N. and Tasso, H. 2010 Phys. Plasmas 17, 032508.Google Scholar
Throumoulopoulos, G. N. and Tasso, H. 2012 Phys. Plasmas 19, 014504.Google Scholar
Throumoulopoulos, G. N., Tasso, H. and Poulipoulis, G. 2009 J. Phys. A: Math. Theor. 42, 335501.Google Scholar
Throumoulopoulos, G. N., Weitzner, H. and Tasso, H. 2006 Phys. Plasmas 13, 122501.Google Scholar
Tsui, K. H., Navia, C. E., Serbeto, A. and Shigueoka, H. 2011 Phys. Plasmas 18, 072502.Google Scholar
Vladimirov, V. A. and Ilin, K. I. 1998 Phys. Plasmas 5, 4199.Google Scholar
Wang, S. 2004 Phys. Rev. Lett. 93, 155007.Google Scholar
Wesson, J. 2011 Tokamaks, 4th edn., Oxford Engineering Science Series 149. Oxford, UK: Oxford University Press.Google Scholar