Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T00:26:41.687Z Has data issue: false hasContentIssue false

Turbulent magnetohydrodynamic density fluctuations

Published online by Cambridge University Press:  13 March 2009

John V. Shebalin
Affiliation:
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, U.S.A.
David Montgomery
Affiliation:
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, U.S.A.

Abstract

A spectral-method numerical code is used to compute mass-density fluctuation spectra in turbulent magnetofluids. The computations are used to test and extend a recent analytical theory of density variations in slightly compressible magnetofluids given by Montgomery, Brown and Matthaeus, and used by them to infer inertial-range density-fluctuation spectra for the nearby interstellar medium and solar wind. A local equation of state is assumed, relating density to pressure. Constant, scalar resistivities and viscosities are used. In the limit of low Mach numbers and high mechanical-to-magnetic pressure ratios, the fit of the computations to the analytical theory is seen to be close.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, J. W., Cordes, J. M. & Rickett, B. J. 1981 Nature, 291, 561.CrossRefGoogle Scholar
Batchelor, G. K. 1953 Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Fyfe, D. & Montgomery, D. 1978 Phys. Fluids, 21, 316.CrossRefGoogle Scholar
Fyfe, D., Montgomery, D. & Joyce, G. 1977 J. Plasma Phys. 17, 369.CrossRefGoogle Scholar
Goldstein, B. & Siscoe, G. E. 1972 NASA Special Publication SP-308 (ed. C. P. Sonnett, P. J. Coleman & J. M. Wilcox), pp. 506515.Google Scholar
Kraichnan, R. H. & Montgomery, D. 1980 Rep. Prog. Phys. 43, 547.CrossRefGoogle Scholar
Lighthill, M. J. 1952 Proc. R. Soc. Lond. A 211, 564.Google Scholar
Matthaeus, W. H. & Goldstein, M. L. 1982 a J. Geophys. Res. 87, 6011.CrossRefGoogle Scholar
Matthaeus, W. H. & Goldstein, M. L. 1982 b J. Geophys. Res. 87, 10347.CrossRefGoogle Scholar
Matthaeus, W. H., Goldstein, M. L. & Smith, C. W. 1982 Phys. Rev. Lett. 48, 1256.CrossRefGoogle Scholar
Matthaeus, W. H. & Montgomery, D. 1981 J. Plasma Phys. 25, 11.CrossRefGoogle Scholar
Montgomery, D., Brown, M. R. & Matthaeus, W. H. 1987 J. Geophys. Res. 92, 282.CrossRefGoogle Scholar
Obszag, S. A. 1971 Stud. Appl. Maths, 50, 293.CrossRefGoogle Scholar
Obszag, S. A. & Tang, C. M. 1979 J. Fluid Mech: 90, 129.CrossRefGoogle Scholar
Panchev, S. 1971 Random Functions and Turbulence, pp. 78104. Pergamon.CrossRefGoogle Scholar
Patterson, G. S. & Orszag, S. A. 1971 Phys. Fluids, 14, 2538.CrossRefGoogle Scholar
Shebalin, J. V., Matthaeus, W. H. & Montgomery, D. 1983 J. Plasma Phys. 29, 525.CrossRefGoogle Scholar
Woo, R. W. & Armstrong, J. W. 1979 J. Geophys. Res. 84, 7288.CrossRefGoogle Scholar