Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T15:36:08.887Z Has data issue: false hasContentIssue false

Turbulent heating in an inhomogeneous magnetized plasma slab

Published online by Cambridge University Press:  01 June 2018

Michael Barnes*
Affiliation:
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX2 8ES, UK Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB, UK
P. Abiuso
Affiliation:
Dipartimento di Fisica dell’Università di Pisa, Scuola Normale Superiore, I-56126 Pisa, Italy
W. Dorland
Affiliation:
Department of Physics, University of Maryland, College Park, Maryland 20740, USA
*
Email address for correspondence: [email protected]

Abstract

Observational evidence in space and astrophysical plasmas with a long collisional mean free path suggests that more massive charged particles may be preferentially heated. One possible mechanism for this is the turbulent cascade of energy from injection to dissipation scales, where the energy is converted to heat. Here we consider a simple system consisting of a magnetized plasma slab of electrons and a single ion species with a cross-field density gradient. We show that such a system is subject to an electron drift wave instability, known as the universal instability, which is stabilized only when the electron and ion thermal speeds are equal. For unequal thermal speeds, we find from quasilinear analysis and nonlinear simulations that the instability gives rise to turbulent energy exchange between ions and electrons that acts to equalize the thermal speeds. Consequently, this turbulent heating tends to equalize the component temperatures of pair plasmas and to heat ions to much higher temperatures than electrons for conventional mass-ratio plasmas.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, I. G., Barnes, M., Cowley, S. C., Dorland, W., Hammett, G. W. & Schekochihin, A. A. 2008 Linearised model Fokker–Planck collision operators for gyrokinetic simulations. I. Thoery. Phys. Plasmas 15, 122509.Google Scholar
Abel, I. G., Plunk, G. G., Wang, E., Barnes, M., Cowley, S. C., Dorland, W. & Schekochihin, A. A. 2013 Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport, and energy flows. Rep. Prog. Phys. 116201.Google Scholar
Barnes, M., Abel, I. G., Dorland, W., Ernst, D. R., Hammett, G. W., Ricci, P., Rogers, B. N., Schekochihin, A. A. & Tatsuno, T. 2009 Linearized model Fokker–Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests. Phys. Plasmas 16, 072107.CrossRefGoogle Scholar
Barnes, M., Abel, I. G., Dorland, W., Goerler, T., Hammett, G. W. & Jenko, F. 2010a Direct multiscale coupling of a transport code to gyrokinetic turbulence codes. Phys. Plasmas 17, 056109.CrossRefGoogle Scholar
Barnes, M., Dorland, W. & Tatsuno, T. 2010b Velocity space resolution in gyrokinetic simulations. Phys. Plasmas 17, 032106.CrossRefGoogle Scholar
Barnes, M., Parra, F. I. & Dorland, W. 2012 Turbulent transport and heating of trace heavy ions in hot, magnetized plasmas. Phys. Rev. Lett. 109, 185003.Google Scholar
Candy, J. 2013 Turbulent energy exchange: calculation and relevance for profile prediction. Phys. Plasmas 20, 082503.Google Scholar
Chandran, B. D. G., Li, B., Rogers, B. N., Quataert, E. & Germaschewski, K. 2010 Perpendicular ion heating by low-frequency Alfven-wave turbulence in the solar wind. Astrophys. J. 720, 503.Google Scholar
Collier, M. R., Hamilton, D. C., Gloeckler, G., Bochsler, P. & Sheldon, R. B. 1996 Neon-20, oxygen-16, and helium-4 densities, temperatures, and suprathermal tails in the solar wind determined with wind/mass. Geophys. Res. Lett. 23, 1191.CrossRefGoogle Scholar
Cranmer, S. R., Field, G. B. & Kohl, J. L. 1999 Spectroscopic constraints on models of ion cyclotron resonance heating in the polar solar corona and high-speed solar wind. Astrophys. J. 518, 937.CrossRefGoogle Scholar
Dorland, W., Jenko, F., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient turbulence. Phys. Rev. Lett. 85, 5579.Google Scholar
Galeev, A. A., Oraevsky, V. N. & Sagdeev, R. Z. 1963 ‘universal’ instability of an inhomogeneous plasma in a magnetic field. J. Expl Theor. Phys. 44, 903.Google Scholar
Hatch, D. R., Jenko, F., Bratanov, V. & Navarro, A. B. 2014 Phase space scales of free energy dissipation in gradient-driven gyrokinetic turbulence. J. Plasma Phys. 80, 531.CrossRefGoogle Scholar
Helander, P. 2014 Microstability of magnetically confined electron–positron plasmas. Phys. Rev. Lett. 113, 135003.CrossRefGoogle ScholarPubMed
Helander, P. & Connor, J. W. 2016 Gyrokinetic stability theory of electron–positron plasmas. J. Plasma Phys. 82, 9058203.Google Scholar
Helander, P. & Plunk, G. G. 2015 The universal instability in general geometry. Phys. Plasmas 22, 090706.CrossRefGoogle Scholar
Hinton, F. L. & Waltz, R. E. 2006 Gyrokinetic turbulent heating. Phys. Plasmas 13, 102301.CrossRefGoogle Scholar
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2006 Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651 (1), 590614.Google Scholar
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2008 A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. 113, A05103.Google Scholar
Kohl, J. L., Noci, G., Antonucci, E., Tondello, G., Huber, M. C. E., Gardner, L. D., Nicolosi, P., Strachan, L., Fineschi, S., Raymond, J. C. et al. 1997 First results from the soho ultraviolet coronograph spectrometer. Solar Phys. 175, 613.Google Scholar
Kotschenreuther, M., Rewoldt, G. & Tang, W. M. 1995 Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities. Comput. Phys. Commun. 88, 128140.CrossRefGoogle Scholar
Krall, N. A. & Rosenbluth, M. N. 1965 Universal instability in complex field geometries. Phys. Fluids 8, 1488.CrossRefGoogle Scholar
Landreman, M., Antonsen, T. M. Jr & Dorland, W. 2015 Universal instability for wavelengths below the ion larmor scale. Phys. Rev. Lett. 114, 095003.Google Scholar
Mischenko, A., Zocco, A., Helander, P. & Könies, A. 2018 Gyrokinetic stability of electron–positron-ion plasmas. J. Plasma Phys. 84, 905840116.Google Scholar
Pedersen, T. S. & Boozer, A. H. 2002 Confinement of nonneutral plasmas on magnetic surfaces. Phys. Rev. Lett. 88, 205002.Google Scholar
Quataert, E. & Gruzinov, A. 1999 Turbulence and particle heating in advection-dominated accretion flows. Astrophys. J. 520, 248.Google Scholar
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Plunk, G. G., Quataert, E. & Tatsuno, T. 2008 placeholder. Plasma Phys. Control. Fusion 50, 124024.Google Scholar
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182, 310.Google Scholar
Schmidt, W. K. H., Rosenbauer, H., Shelly, E. G. & Geiss, J. 1980 On temperature and speed of he++ and o6+ ions in the solar wind. Geophys. Res. Lett. 7, 697.CrossRefGoogle Scholar
Sugama, H., Okamoto, M., Horton, W. & Wakatani, M. 1996 Transport processes and entropy production in toroidal plasmas with gyrokinetic electromagnetic turbulence. Phys. Plasmas 3, 2379.Google Scholar
Tatsuno, T., Dorland, W., Schekochihin, A. A., Plunk, G. G., Barnes, M., Cowley, S. C. & Howes, G. G. 2009 Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence. Phys. Rev. Lett. 103, 015003.Google Scholar