Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T05:24:18.205Z Has data issue: false hasContentIssue false

Turbulent excitation of spontaneous reconnection

Published online by Cambridge University Press:  13 March 2009

D. Deeds
Affiliation:
Department of Physics, University of California, Irvine, California 92717, U.S.A.
G. Van Hoven
Affiliation:
Department of Physics, University of California, Irvine, California 92717, U.S.A.

Abstract

We explore the long-term nonlinear evolution of a tearing-mode-unstable sheared-field plasma in a turbulent environment. Two different physical configurations are modeled, and a different computational system is used for each. Results of both sets of calculations show that magnetic tearing arises spontaneously provided that the initial turbulence energy level is below the natural saturation level of the tearing instability.

We discuss briefly the relationship between our results and those of previous calculations, concluding that there are no significant unexplainable disagreements.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biskamp, D. 1982 Z. Naturforsch. 37, 840.CrossRefGoogle Scholar
Biskamp, D. & Welter, H. 1983 Phys. Lett. 96A, 25.CrossRefGoogle Scholar
Boozer, A. H. 1986 J. Plasma Phys. 35, 133.CrossRefGoogle Scholar
Cross, M. A. & Van Hoven, G. 1971 Phys. Rev. A 4, 2347.CrossRefGoogle Scholar
Deeds, D. A. & Van Hoven, G. 1988 J. Plasma Phys. 40, 517.CrossRefGoogle Scholar
Diamond, P. H., Hazeltine, R. D., An, Z. G., Carreras, B. A. & Hicks, H. R. 1984 Phys. Fluids, 27, 1449.CrossRefGoogle Scholar
Forbes, T. G. & Priest, E. R. 1987 Rev. Geophys. 25, 1583.CrossRefGoogle Scholar
Furth, H. P., Killeen, J. & Rosenbluth, M. N. 1963 Phys. Fluids, 6, 459.CrossRefGoogle Scholar
Matthaeus, W. H. & Lamkin, S. L. 1985 Phys. Fluids, 28, 303.CrossRefGoogle Scholar
Matthaeus, W. H. & Lamkin, S. L. 1986 Phys. Fluids, 29, 2513.CrossRefGoogle Scholar
Matthaeus, W. H. & Montgomery, D. C. 1981 J. Plasma Phys. 25, 11.CrossRefGoogle Scholar
Petschek, H. 1964 Proceedings of AAS-NASA Symposium on the Physics of Solar flares (ed. Hess, W. N.), p. 425. NASA SP-50.Google Scholar
Priest, E. R. 1985 Rep. Prog. Phys. 48, 955.CrossRefGoogle Scholar
Schnack, D. D. & Killeen, J. 1980 J. Comp. Phys. 35, 110.CrossRefGoogle Scholar
Sparks, L. & Van Hoven, G. 1987 Phys. Fluids, 30, 2470.CrossRefGoogle Scholar
Sparks, L. & Van Hoven, G. 1988 Astrophys. J. 333, 953.CrossRefGoogle Scholar
Steinolfson, R. S. & Van Hoven, G. 1983 Phys. Fluids, 26, 117.CrossRefGoogle Scholar
Steinolfson, R. S. & Van Hoven, G. 1984 a Astrophys. J. 276, 391.CrossRefGoogle Scholar
Steinolfson, R. S. & Van Hoven, G. 1984 b Phys. Fluids. 27, 1207.CrossRefGoogle Scholar
Strauss, H. R. 1986 Phys. Fluids, 29, 3668.CrossRefGoogle Scholar
Tachi, T., Steinolfson, R. S. & Van Hoven, G. 1983 Phys. Fluids, 26, 2976.CrossRefGoogle Scholar
Van Hoven, G. & Cross, M. A. 1973 Phys. Rev. A 7, 1347.CrossRefGoogle Scholar
Van Hoven, G., Tachi, T. & Steinolfson, R. S. 1984 Astrophys. J. 280, 391.CrossRefGoogle Scholar
White, R. B., Monticello, D. A., Rosenbluth, M. N. & Waddell, B. V. 1977 Phys. Fluids, 20, 800.CrossRefGoogle Scholar