Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T01:41:52.929Z Has data issue: false hasContentIssue false

Turbulence changes from magnetic fields in a stationary plasma

Published online by Cambridge University Press:  23 December 2010

A. B. ALEXANDER
Affiliation:
Center for Plasma Science and Technology, Florida A&M University, Tallahassee, FL 32310, USA ([email protected])
C. T. RAYNOR
Affiliation:
Center for Plasma Science and Technology, Florida A&M University, Tallahassee, FL 32310, USA ([email protected])
D. L. WIGGINS
Affiliation:
Center for Plasma Science and Technology, Florida A&M University, Tallahassee, FL 32310, USA ([email protected])
M. K. ROBINSON
Affiliation:
Center for Plasma Science and Technology, Florida A&M University, Tallahassee, FL 32310, USA ([email protected])
C. C. AKPOVO
Affiliation:
Center for Plasma Science and Technology, Florida A&M University, Tallahassee, FL 32310, USA ([email protected])
J. A. JOHNSON III
Affiliation:
Center for Plasma Science and Technology, Florida A&M University, Tallahassee, FL 32310, USA ([email protected])

Abstract

When the krypton plasma in a DC glow discharge tube is exposed to an axial magnetic field, the turbulent energy and the characteristic dominant mode in the turbulent fluctuations are systematically and unexpectedly reduced with increasing magnetic field strength. When the index measuring the rate of transfer of energy through fluctuation scales is monitored, a lambda-like dependence on turbulent energy is routinely observed in all magnetic fields. From this, a critical turbulent energy is identified, which also decreases with increasing magnetic field strength.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Conway, G. D. 2008 Turbulence measurements in fusion plasmas. Plasma Phys. Control. Fusion 50 (12), 124026.CrossRefGoogle Scholar
[2]Boxer, A. C., Bergmann, R., Ellsworth, J. L., Garnier, D. T., Kesner, J., Mauel, M. E. et al. 2010 Turbulent inward pinch of plasma confined by a levitated dipole magnet. Nat. Phys. 6 (3), 207212 [10.1038/nphys1510].CrossRefGoogle Scholar
[3]Johnson, J. A. III, and Ramaiah, R. 1987 Plasma instability in the presence of negative ions. Phys. Rev. A 36 (2), 774.CrossRefGoogle ScholarPubMed
[4]Johnson, J. A. III, Johnson, L. E. and Hong, Y. 1991 Dimensional analysis in a turbulent glow discharge plasma. Phys. Lett. A 158 (3–4), 144148.CrossRefGoogle Scholar
[5]Raynor, C. T., Mezonlin, E. D. and Johnson, J. A. III 2009 Critical turbulent energy reductions in plasmas using weak magnetic fields. J. Appl. Phys. 105 (4), 043301043306.CrossRefGoogle Scholar
[6]Retino, A., Sundkvist, D., Valvads, A., Mozer, F., Andre, M. and Owen, C. J. 2007 In situ evidence of magnetic reconnection in turbulent plasma. Nat. Phys. 3 (4), 236238 [10.1038/nphys574].CrossRefGoogle Scholar
[7]Podder, N. K., Johnson, J. A. III, Raynor, C. T., Loch, S. D., Ballance, C. P. and Pindzola, M. S. 2004 Helium line intensity ratio in microwave-generated plasmas. Phys. Plasmas 11 (12), 54365443.CrossRefGoogle Scholar
[8]Namihira, T., Sakai, S., Yamaguchi, T., Yamamoto, K., Yamada, C., Kiyan, T. et al. 2007 Electron temperature and electron density of underwater pulsed discharge plasma produced by solid-state pulsed-power generator. Plasma Sci. IEEE Trans. 35 (3), 614618.CrossRefGoogle Scholar
[9]Milosavljevic, V., Djenize, S. and Dimitrijevic, M. S. 2003 Experimental and calculated stark widths within the Kr I spectrum. Phys. Rev. E 68 (1), 016402.CrossRefGoogle ScholarPubMed
[10]Landau, L. D. and Lifshitz, E. M. 1987 Fluid Mechanics. Oxford, UK: Reed Educational and Professional.Google Scholar