Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T00:55:37.675Z Has data issue: false hasContentIssue false

Transverse ionizing MHD detonation waves. Part 2. Numerical simulation

Published online by Cambridge University Press:  13 March 2009

Allan B. Friedland
Affiliation:
American Science and Engineering, Cambridge, Massachusetts
Shimshon Frankenthal
Affiliation:
American Science and Engineering, Cambridge, Massachusetts

Abstract

A numerical method for simulating the temporal evolution of an ionizing MHD detonation, is presented, together with flow profiles for various combinations of imposed magnetic field and ionization temperature in the limit of large downstream conductivity. The propagation speeds asymptotically approach the values predicted by the jump relations and the MHD Chapman–Jouguet condition. The downstream flow approaches a self-similar solution. The wave evolution is discussed for situations where the Chapman–Jouguet and jump relations admit either no solution or multiple solutions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abarbanel, S. & Frankenthal, S. 1969 Israel J. of Technology, 7, 465.Google Scholar
Abarbanel, S. & Zwas, G. 1969 Mathematics of Computation, 23, 549.CrossRefGoogle Scholar
Chu, C. K. 1964 Phys. Fluids, 7, 1349.CrossRefGoogle Scholar
Chu, C. K. & Taussig, R. T. 1967 Phys. Fluids, 10, 249.CrossRefGoogle Scholar
Cowely, M. D. 1967 J. Plasma Phys. 37, 1.Google Scholar
Frankenthal, S., Friedland, A. B. & Abarbanel, S. 1973 J. Plasma Phys. 10, 53.CrossRefGoogle Scholar
Gordon, A. R. & Helliwell, J. B. 1967 J. Plasma Phys. 1, 219.CrossRefGoogle Scholar
Helliwell, J. B. 1962 J. Fluid Mech. 14, 405.CrossRefGoogle Scholar
Helliwell, J. B. 1963 J. Fluid Mech. 16, 243.CrossRefGoogle Scholar
Helliwell, J. B. & Pack, D. C. 1962 Phys. Fluids, 5, 738.CrossRefGoogle Scholar
Kulikovskii, A. G. & Lyubimov, G. A. 1960 a Soviet Phys. Doklady, 4, 1185.Google Scholar
Kulikovskii, A. G. & Lyubimov, G. A. 1960 b Soviet Phys. Doklady, 4, 1195.Google Scholar
Lax, P. 1954 Comm. Pure Appl. Math. 7, 159.CrossRefGoogle Scholar
Lax, P. & Wendroff, B. 1960 Comm. Pure Appl. Math. 13, 217.CrossRefGoogle Scholar
Lyubimov, G. A. 1959 Soviet Phys. Doklady, 4, 510.Google Scholar
Milne-Thompson, L. M. 1960 Theoretical Hydrodynamics. Macmillan.Google Scholar
Richtmyer, R. D. & Morton, K. W. 1967 Difference Methods for Initial-Value Problems (2nd edn.). Interscience.Google Scholar
Warner, F. 1963 Proc. 9th Symp. on Combustion, p. 536. Academic.Google Scholar
Zeldovich, I. B. & Kompaneets, A. S. 1960 Theory of Detonation. Academic.Google Scholar
Zhilin, I. L. 1960 Prikl. Mat. Mekh. 24, 543.Google Scholar