Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T00:26:34.819Z Has data issue: false hasContentIssue false

Transport properties of the two-component strongly coupled plasma

Published online by Cambridge University Press:  13 March 2009

R. Cauble
Affiliation:
Berkeley Research Associates, P.O. Box 852, Springfield, VA 22150, USA
W. Rozmus
Affiliation:
Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada

Abstract

The systematic derivation of transport coefficients for the semi-classical two-component strongly coupled plasma is presented. Starting from a detailed kinetic memory function formulation, a hydrodynamic projection operator method is applied to find a transport model equivalent to the two-Sonine polynomial approximation. The electron thermal conductivity K, d.c. electrical conductivity σ, and the thermoelectric power coefficient are expressed in terms of exact static correlation functions, which are calculated in the hypernetted chain approximation. Numerical values of k and σ are given and comparisons are made with other theories and molecular dynamics simulations of strongly coupled hydrogen. Predictions of σ and k for strongly coupled carbon are also presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balian, R. & Adam, J. C. (ed.) 1982 Laser-Plasma Interactions. North-Holland.Google Scholar
Baus, M. 1977 a Physica, 88 A, 319.Google Scholar
Baus, M. 1977 b Physica, 88 A, 336.CrossRefGoogle Scholar
Baus, M. & Hansen, J. P. 1980 Phys. Rep. 59, 1.CrossRefGoogle Scholar
Baus, M. & Hansen, J. P. & Sjögren, L. 1981 Phys. Lett. A, 82, 180.CrossRefGoogle Scholar
Bernu, B. & Hansen, J. P. 1982 Phys. Rev. Lett. 48, 1375.Google Scholar
Boercker, D. B., Rogers, F. J. & DeWitt, H. E. 1982 Phys. Rev. A, 25, 1623.CrossRefGoogle Scholar
Braginskii, S. I. 1965 Review of Plasma Physics (ed. Leontovich, M. A.), vol. 1, p. 205. Consultants Bureau.Google Scholar
Brysk, H., Campbell, R. M. & Hammerling, P. 1975 Plasma Phys. 17, 473.CrossRefGoogle Scholar
Cauble, R. & Boercker, D. B. 1983 Phys. Rev. A, 28, 944.Google Scholar
Cauble, R. & Rozmus, W. 1985 Phys. Fluids, 28, 3387.CrossRefGoogle Scholar
Deutsch, C. 1977 Phys. Lett. A, 60, 317.CrossRefGoogle Scholar
Deutsch, C., Gombert, M. M. & Minoo, H. 1978 Phys. Lett. A, 65, 381.CrossRefGoogle Scholar
Deutsch, C., Gombert, M. M. & Minoo, H. 1979 Phys. Lett A, 72, 481.Google Scholar
Forster, D. 1974 Phys. Rev. A, 9, 943.CrossRefGoogle Scholar
Forster, D. & Martin, P. C. 1970 Phys. Rev. A, 2, 1515.Google Scholar
Hansen, J. P. & McDonald, I. R. 1978 Phys. Rev. Lett. 41, 1379.CrossRefGoogle Scholar
Hansen, J. P. & McDonald, I. R. 1981 Phys. Rev. A, 23, 2041.CrossRefGoogle Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics. Benjamin.Google Scholar
Kalman, G. & Carini, P. 1978 Strongly Coupled Plasmas. Plenum.Google Scholar
Mazenko, G. F. 1974 Phys. Rev. A, 9, 360.Google Scholar
Mazenko, G. F. & Yip, S. 1977 Statistical Mechanics, part B (ed. Berne, B. J.). Plenum.Google Scholar
Rogers, F. J., DeWitt, H. E. & Boercker, D. B. 1981 Phys. Lett. A, 82, 331.Google Scholar
Rozmus, W. & Cauble, R. 1985 Phys. Lett. A, 112, 440.Google Scholar
Sjögren, L., Hansen, J. P. & Pollock, E. L. 1981 Phys. Rev. A, 24, 1544.CrossRefGoogle Scholar
Wallenborn, J. & Baus, M. 1978 Phys. Rev. A, 18, 1737.CrossRefGoogle Scholar
Williams, R. H. & DeWitt, H. E. 1969 Phys. Fluids, 12, 2326.Google Scholar