Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T21:07:54.415Z Has data issue: false hasContentIssue false

Transport equations for lower hybrid waves in a turbulent plasma

Published online by Cambridge University Press:  24 November 2014

J. T. Mendonça*
Affiliation:
Instituto de Física, Universidade de São Paulo, São Paulo SP, 05508-090Brasil
W. Horton
Affiliation:
The University of Texas at Austin, Austin, Texas 78712, USA
R. M. O. Galvão
Affiliation:
Instituto de Física, Universidade de São Paulo, São Paulo SP, 05508-090Brasil
Yves Elskens
Affiliation:
Aix-Marseille Université, CNRS, UMR 7345, campus Saint-Jérôme, FR-13013 Marseilles, France
*
Email address for correspondence: [email protected]

Abstract

We consider the limits of validity of ray tracing and ray diffusion equations, for short wavelength waves propagating in a turbulent plasma background. We derive an improved transport equation for the electric field autocorrelation function, where first order diffraction effects associated with these waves are included. We apply this description to the case of lower hybrid (LH) waves propagating in non-stationary plasma where density perturbations can occur due to drift wave turbulence, as well as magnetic field perturbations due to MHD turbulence. This is relevant to the problem of LH current drive.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernstein, I. B. 1975 Phys. Fluids 18, 320.Google Scholar
Bonoli, P. T. and Ott, E. 1982 Phys. Fluids 25, 359.Google Scholar
Bonoli, P. T.et al. 2008 Phys. Plasmas 15, 056 117d.CrossRefGoogle Scholar
Gormezano, C. 1986 Plasma Phys. Control Fusion 28, 1365.CrossRefGoogle Scholar
Horton, W., Goniche, M., Peysson, Y., Decker, J., Ekedahl, A. and Litaudon, X. 2013 Phys. Plasmas 20, 112 508.Google Scholar
ITER Physics Expert Group on Energetic Particles 1999 Heating and current drive and ITER physics basis editors. Nucl. Fusion 39, 2495.CrossRefGoogle Scholar
Karney, C. F. F. and Fisch, N. J. 1986 Phys. Fluids 29, 180.Google Scholar
Lu, Z. X., Zonca, F. and Cardinali, A. 2013 Phys. Plasmas 20, 032 115Google Scholar
Mendonçca, J. T. 1992 Phys. Fluids B 4, 2705.Google Scholar
Mendonçca, J. T. 2009 New J. Phys. 11, 013 029.Google Scholar
Mendonçca, J. T. 2011 Phys. Plasmas 18, 062 101.Google Scholar
Mendonçca, J. T. and Benkadda, S. 2012 Phys. Plasmas 19, 082 316.Google Scholar
Mendonçca, J. T. and Hizanidis, K. 2011 Phys. Plasmas 18, 112 306.Google Scholar
Weinberg, S. 1962 Phys. Rev. 126, 1899.CrossRefGoogle Scholar
Wright, J. C., Valeo, E. J., Phillips, C. K., Bonoli, P. T. and Brambilla, M. 2008 Commun. Comput. Phys. 4, 545.Google Scholar