Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T03:19:27.850Z Has data issue: false hasContentIssue false

Transport coefficients of partially ionized helium

Published online by Cambridge University Press:  13 March 2009

R. S. Devoto
Affiliation:
Department of Aeronautics and Astronautics and Institute for Plasma Research, Stanford University, Stanford, California
C. P. Li
Affiliation:
Department of Aeronautics and Astronautics and Institute for Plasma Research, Stanford University, Stanford, California

Abstract

Transport coefficients are given in tabular form for partially ionized helium in chemical equilibrium at several pressures and for temperatures up to 35000 °K. Simplified theoretical expressions, derived with the Chapman—Enskog—Burnett method, were used for the computations. The convergence of the approximations to the electrical conductivity was also studied. It was found that the first approximation was within 17% of the true value at low ionization in contrast to recent results for argon where it could not be determined if even the fourth approximation had converged to the true value.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amdur, I. 1966 Private communication.Google Scholar
Amdur, I. & Jordan, J. E. 1966 Elastic scattering of high energy beams: repulsive forces. In Advances in Chemical Physics 10, edited by Ross, J.. New York: Interscience.CrossRefGoogle Scholar
Amdur, I., Jordan, J. E. & Colgate, S. O. 1961 Scattering of high velocity neutral particles. XI. Further study of the He-He potential. J. Chem. Phys. 34, 1525.CrossRefGoogle Scholar
Blais, N. C. & Mann, J. B. 1960 Thermal conductivity of helium and hydrogen at high temperatures. J. Chem. Phys. 32, 1459.Google Scholar
Chanin, L. M. & Biondi, M. A. 1957 Temperature dependence of ion mobilities in He, Ne and A. Phys. Rev. 106, 473.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1958 The Mathematical Theory of Non-Uniform Gases. Cambridge University Press.Google Scholar
Collins, D. F., Greif, R. & Bryson, A. E. 1965 Measurements of the thermal conductivity of helium in the temperature range 1600 to 6700 degrees Kelvin. Int. J. Heat Mass Transfer 8, 1209.CrossRefGoogle Scholar
Cramer, W. H. & Simons, J. H. 1957 Elastic and inelastic scattering of low velocity He + ions in helium. J. Chem. Phys. 26, 1272.Google Scholar
Dalgarno, A. 1958 The mobility of ions in their parent gases. Phil. Trans. A 250, 426.Google Scholar
Devoto, R. S. 1966 Transport properties of ionized monatomic Gases. Phys. Fluids 9, 1230.Google Scholar
Devoto, R. S. 1967a Transport coefficients of partially ionized argon. Phys. Fluids 10, 354.CrossRefGoogle Scholar
Devoto, R. S. 1967b Simplified expressions for the transport properties of ionized monatomic gases. Phys. Fluids 10, 2105.Google Scholar
Frost, L. S. & Phelps, A. V. 1964 Momentum transfer cross sections for slow electrons in He, Ar, Kr and Xe from transport coefficients. Phys. Rev. 136, 1538.CrossRefGoogle Scholar
Gilbert, T. L. & Wahl, A. C. 1966 Calculated potential curves for He-He, Ne-Ne, Ar.Ar and to be submitted to J. Chem. Phys.Google Scholar
Griem, H. R. 1964 Plasma Spectroscopy. New york: McGraw-Hill.Google Scholar
Hasted, J. B. 1964 Physics of Atomic Collisions. London: Butterworths.Google Scholar
Herzberg, G. 1950 Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules. Princeton, New Jersey: Van Nostrand.Google Scholar
Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B. 1964 Molecular Theory of Gases and Liquids. New York: John Wiley and Sons.Google Scholar
Labahn, R. W. & Callaway, J. 1966 Elastic scattering of low-energy electrons from atomic helium. Phys. Rev. 147, 28.CrossRefGoogle Scholar
Landshoff, R. 1951 Convergence of the Chapman—Enskog method for a completely ionized gas. Phys. Rev. 82, 442.CrossRefGoogle Scholar
Liboff, R. L. 1959 Transport coefficients using the shielded Coulomb potential. Phys. Fluids 2, 40.CrossRefGoogle Scholar
Lick, W. J. & Emmons, H. W. 1965 Transport Properties of Helium from 200 to 50,000 °K. Cambridge, Mass.: Harvard University Press.Google Scholar
Mason, E. A. & Rice, W. E. 1954 The intermolecular potentials of helium and hydrogen. J. Chem. Phys. 22, 522.CrossRefGoogle Scholar
Mason, E. A. & Vanderslice, J. T. 1958 Determination of the binding energy of from ion scattering data. J. Chem. Phys. 29, 361.CrossRefGoogle Scholar
Mason, E. A., Vanderslice, J. T. & Yos, J. M. 1959 Transport properties of high temperature rnulticomponent gas mixtures. Phys. Fluids 2, 688.Google Scholar
Moiseiwitsch, B. L. 1956 Interaction energy and charge exchange between helium atoms and ions. Proc. Phys. Soc. A 69, 653.Google Scholar
Monchick, L. 1959 Collision integrals for the exponential repulsive potential. Phys. Fluids 2, 695.CrossRefGoogle Scholar
Moore, C. E. 1949 Atomic Energy Levels. NBS Circular 467.Google Scholar
Mulcahy, M. J. & Lennon, J. J. 1962 Ambipolar diffusion measurements in low pressure rare gas afterglows. Proc. Phys. Soc. A 80, 626.CrossRefGoogle Scholar
O'malley, T. F. 1963 Extrapolation of electron-rare gas atom cross-sections to zero energy. Phys. Rev. 130, 1020.CrossRefGoogle Scholar
Phillipson, P. E. 1962 Repulsive interaction between two ground-state helium atoms. Phys. Rev. 125, 1981.CrossRefGoogle Scholar
Ramsauer, C. & Kollath, R. 1932 Die Winkelverteilung bei der Streuung langsanaer Electronen an Gasmolekülen. II. Fortsetzung. Annln. Phys. 12, 529.Google Scholar
Reagan, P. N., Browne, J. C. & Matsen, F. A. 1963 Dissociation energy of Phys. Rev. 132, 304.CrossRefGoogle Scholar
Schweitzer, S. & Mitchner, M. 1966 Electrical conductivity of partially ionized gases. AIAA J. 4, 1012.CrossRefGoogle Scholar
Smith, F. J., Mason, E. A. & Munn, R. J. 1965 Classical collision integrals for the repulsive screened Coulomb potential. Phys. Fluids 8, 1907.CrossRefGoogle Scholar
Smith, F. J. & Munn, R. J. 1964 Automatic calculation of the transport collision integrals with tables for the Morse potential. J. Chem. Phys. 41, 3560.CrossRefGoogle Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases, 2nd edition. New York: Interscience.Google Scholar
Vincenti, W. G. & Kruger, C. H. Jr, 1965 Introduction to Physical Gas Dynamics. New York: John Wiley and Sons.Google Scholar
Westin, Sverre 1946 Investigations on the elastic scattering of slow electrons in helium, neon and argon. Det. Kgl. Norske Videnskabers Selskabs Skrifter. Nr. 2. Trondheim: F. Brunns Bokhandel.Google Scholar