Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T00:19:15.894Z Has data issue: false hasContentIssue false

Transfer equations for spectral densities of inhomogeneous MHD turbulence

Published online by Cambridge University Press:  13 March 2009

C.-Y. Tu
Affiliation:
Max-Planck-Institut für Aeronomie, Postfach 20, D-3411 Katlenburg-Lindau, Federal Republic of Germany
E. Marsch
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA, England, U.K.

Abstract

On the basis of the dynamic equations governing the evolution of magneto-hydrodynamic fluctuations expressed in terms of Elsässer variables and of their correlation functions derived by Marsch and Tu, a new set of equations is presented here describing the evolutions of the energy spectrum e± and of the residual energy spectra eR and es of MHD turbulence in an inhomogeneous magnetofluid. The nonlinearities associated with triple correlations in these equations are analysed in detail and evaluated approximately. The resulting energy-transfer functions across wavenumber space are discussed. For e± they are shown to be approximately energy-conserving if the gradients of the flow speed and density are weak. New cascading functions are heuristically determined by an appropriate dimensional analysis and plausible physical arguments, following the standard phenomenology of fluid turbulence. However, for eR the triple correlations do not correspond to an ‘energy’ conserving process, but also represent a nonlinear source term for eR. If this source term can be neglected, the spectrum equations are found to be closed. The problem of dealing with the nonlinear source terms remains to be solved in future investigations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bavassano, B., Dobrowolny, M., Mariani, F. & Ness, N. F. 1982 J. Geophys. Res. 87, 3617.Google Scholar
Coleman, P. J. 1968 Astrophys. J. 153, 371.Google Scholar
Denskat, K. U. & Neubauer, F. M. 1982 J. Geophys. Res. 87, 2215.CrossRefGoogle Scholar
Dobrowolny, M., Mangeney, A. & Veltri, P. 1980 Phys. Rev. Lett. 45, 144.Google Scholar
Goldstein, M. L., Roberts, D. A. & Matthaeus, W. H. 1986 J. Geophys. Res. 91, 357.Google Scholar
Grappin, R., Frisch, U., Léorat, L. & Pouquet, A. 1982 Astron. Astrophys. 105, 6.Google Scholar
Grappin, R., Mangeney, A. & Marsch, E. 1990 J. Geophys. Res., 95, 8197.Google Scholar
Grappin, R., Pouquet, A. & Leorat, J. 1983 Astron. Astrophys. 126, 51.Google Scholar
Hinze, J. O. 1975 Turbulence. McGraw-Hill.Google Scholar
Kolmogorov, A. N. 1941 C. R. Acad. Sci. URSS, 30, 301.Google Scholar
Kraichnan, R. H. 1965 Phys. Fluids, 8, 1385.Google Scholar
Marsch, E. & Mangeney, A. 1987 J. Geophys. Res. 92, 7363.CrossRefGoogle Scholar
Marsch, E. & Tu, C. Y. 1989 J. Plasma Phys. 41, 479.Google Scholar
Marsch, E. & Tu, C. Y. 1990 J. Geophys. Res., in press.Google Scholar
Matthaeus, W. H. & Goldstein, M. L. 1982 J. Geophys. Res. 87, 6011.Google Scholar
Matthaeus, W. H. & Zhou, Y. 1988 Nonlinear Phenomena in MHD Turbulence (ed. A. Pouquet, M. Meneguzzi & P. L. Sulem).Google Scholar
Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.Google Scholar
Panchev, S. 1971 Random Functions and Turbulence. Pergamon.Google Scholar
Roberts, D. A., Goldstein, M. L. & Klein, L. W. 1990 J. Geophys. Res. 95, 4203.Google Scholar
Roberts, D. A., Goldstein, M. L., Klein, L. W. & Matthaeus, W. H. 1987 a J. Geophys. Res. 92, 12023.Google Scholar
Roberts, D. A., Klein, L. W., Goldstein, M. L. & Matthaeus, W. H. 1987 b J. Geophys. Res. 92, 11021.Google Scholar
Tu, C.-Y. 1987 Solar Phys. 109, 149.Google Scholar
Tu, C.-Y. 1988 J. Geophys. Res. 93, 7.CrossRefGoogle Scholar
Tu, C.-Y. & Marsch, E. 1990 J. Geophys. Res., 95, 4337.Google Scholar
Tu, C.-Y., Marsch, E. & Thieme, K. M. 1989 a J. Geophys. Res. 94, 11739.Google Scholar
Tu, C.-Y., Pu, Z.-Y. & Wei, F.-S. 1984 J. Geophys. Res. 89, 9695.CrossRefGoogle Scholar
Tu, C.-Y., Roberts, D. A. & Goldstein, M. L. 1989 b J. Geophys. Res. 94, 13575.Google Scholar
Veltri, P., Mangeney, A. & Dobrowolny, M. 1982 Nuovo Cim. 68 B, 235.CrossRefGoogle Scholar
Zhou, Y. & Matthaeus, W. H. 1989 Geophys. Res. Lett. 16, 755.CrossRefGoogle Scholar