Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T13:55:59.051Z Has data issue: false hasContentIssue false

A time-dependent model for high-pressure discharges in narrow ablative capillaries

Published online by Cambridge University Press:  13 March 2009

D. Zoler
Affiliation:
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel
S. Cuperman
Affiliation:
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel
J. Ashkenazy
Affiliation:
Soreq Nuclear Research Center, 70600 Yavne, Israel
M. Caner
Affiliation:
Soreq Nuclear Research Center, 70600 Yavne, Israel
Z. Kaplan
Affiliation:
Soreq Nuclear Research Center, 70600 Yavne, Israel

Extract

A time-dependent quasi-one-dimensional model is developed for studying high- pressure discharges in ablative capillaries used, for example, as plasma sources in electrothermal launchers. The main features of the model are (i) consideration of ablation effects in each of the continuity, momentum and energy equations; (ii) use of a non-ideal equation of state; and (iii) consideration of space- and time-dependent ionization.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashkenazy, J., Kipper, R. & Caner, M. 1991 Phys. Rev. A 43, 5568.CrossRefGoogle Scholar
Burton, R. L., Hilko, B. K., Witherspoon, F. D. & Jaafari, G. 1991 IEEE Trans. Plasma Sci. 19, 340.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-uniform Gases. Cambridge University Press.Google Scholar
Cuperman, S. & Zoler, D. 1992 Comp. Phys. Commun. 67, 435.CrossRefGoogle Scholar
Cuperman, S. & Zoler, D. 1993 Fluid Dyn. Res. 12 (4), 185.CrossRefGoogle Scholar
Cuperman, S., Zoler, P., Ashkenazy, J., Caner, M. & Kaplan, Z. 1993 IEEE Trans. Plasma Sci. 21(3), 282.CrossRefGoogle Scholar
Gal, D. & Caner, M. 1991 Private communication, Nahal Soreq Nuclear Center.Google Scholar
Goldstein, S. A., Tidman, D. A., Burton, R. L., Massey, D. W. & Windsor, K. L. 1983 GT Devices Report 83–11.Google Scholar
Hermann, W., Kogelshatz, U., Ragaller, K. &Schade, E. 1974 J. Phys. D: Appl. Phys. 7, 607.CrossRefGoogle Scholar
Holian, K. S. (ed.) 1984 T-4 Handbook of Material Properties Data Bases, vol. IIc. Equations of State, Los Alamos National Laboratory, Los Alamos, New Mexico 875449 (LA-10160- MS).Google Scholar
Ibrahim, Z. E. 1980 J. Phys. D: Appl. Phys. 13, 2045.CrossRefGoogle Scholar
Kovitya, P. & Lowke, J. J. 1984 J. Phys. D: Appl. Phys. 17, 1197.CrossRefGoogle Scholar
Loeb, A. & Kaplan, Z. 1989 IEEE Trans. Magn. 25, 342.CrossRefGoogle Scholar
Melgaard, P. K. & Sincovec, R. F. 1981 ACM Trans. Math. Software 7, 126.CrossRefGoogle Scholar
Niemeyer, L. 1978 IEEE Trans. Power Apparatus Syst. 97, 950.CrossRefGoogle Scholar
Ruchti, C. B. 1988 IEEE Trans. Plasma Sci. 16, 1.CrossRefGoogle Scholar
Ruchti, C. B. & Niemeyer, L. 1986 IEEE Trans. Plasma Sci. 4, 423.CrossRefGoogle Scholar
Shohet, L. J. 1991 IEEE Trans. Plasma Sci. 19, 725.CrossRefGoogle Scholar
Silvestre, N., Hensel, D. & Daree, K. 1991 Numerical investigation of electrical arcs in cylindrical tubes. ISL Report.Google Scholar
Tidman, D. A., Thio, Y. C., Goldstein, S. A. & Spicer, D. S. 1986 GT Devices Report 80–7.Google Scholar
Zeldovich, Y. B. & Raizer, Yu. P. 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic.Google Scholar
Zoler, D. & Cuperman, S. 1992 J. Plasma Phys. 48, 215.CrossRefGoogle Scholar
Zoler, D., Cuperman, S., Ashkenazy, J.Caner, M. & Kaplan, Z. 1993 J. Phys. D: Appl. Phys. 26, 657.CrossRefGoogle Scholar