Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T13:46:56.971Z Has data issue: false hasContentIssue false

Three-dimensional stability of solitary shear kinetic Alfvén waves in a low-beta plasma

Published online by Cambridge University Press:  13 March 2009

K. P. Das
Affiliation:
Department of Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
L. P. J. Kamp
Affiliation:
Department of Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
F. W. Sluijter
Affiliation:
Department of Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

Abstract

The three-dimensional stability of solitary shear kinetic Alfvén waves in a low-β plasma is investigated by the method of Zakharov & Rubenchik (1974). It is found that there is no instability if the direction of perturbation falls within a certain region of space. The growth rate of the instability for the unstable region is determined. This growth rate is found to decrease with increasing angle between the direction of propagation of the solitary wave and the direction of the external uniform magnetic field. A particular case of the present analysis gives results on the stability of ion-acoustic solitons in a magnetized plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belcher, J. W. & Davis, L. 1971 J. Geophys. Res. 76, 3534.CrossRefGoogle Scholar
Hasagawa, A. & Mima, K. 1976 Phys. Rev. Lett. 37, 690.CrossRefGoogle Scholar
Hasagawa, A. & Mima, K. 1977 Phys. Rev. Lett. 39, 205.CrossRefGoogle Scholar
Ince, E. L. 1956 Ordinary Differential Equations, p. 214. Dover.Google Scholar
Infeld, E. 1985 J. Plasma Phys. 33, 171.CrossRefGoogle Scholar
Infeld, E., Rowlands, G. & Hen, M. 1978 Acta Phys. Polon. A 54, 131.Google Scholar
Kalita, M. K. & Kalita, B. C. 1986 J. Plasma Phys. 35, 267.CrossRefGoogle Scholar
Laedke, E. W. & Spatschek, K. H. 1982 J. Plasma Phys. 28, 469.CrossRefGoogle Scholar
Sagdeev, R. Z. & Galeev, A. A. 1969 Nonlinear Plasma Theory, p. 8. Benjamin.Google Scholar
Shukla, P. K., Rahaman, H. U. & Sharma, R. P. 1982 J. Plasma Phys. 28, 125.CrossRefGoogle Scholar
Yu, M. Y. & Shukla, P. K. 1978 Phys. Fluids, 21, 1457.CrossRefGoogle Scholar
Zakharov, V. E. & Rubenchik, A. M. 1974 Soviet Phys. JETP, 38, 494.Google Scholar