Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T00:26:09.767Z Has data issue: false hasContentIssue false

Three-dimensional simulations of magnetic reconnection in a dusty plasma

Published online by Cambridge University Press:  01 August 2008

SAMUEL A. LAZERSON
Affiliation:
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA ([email protected])
HEINZ M. WIECHEN
Affiliation:
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA ([email protected])

Abstract

We present the results of three-dimensional self-consistent multi-fluid simulations of magnetic reconnection in a dusty plasma. We ballistically relax a Harris-like current sheet into a fluid pseudo-equilibrium. We then perturb the current sheet with typical inflow and outflow velocities associated with classical models of reconnection. We find a 20% decrease in magnetic energy for the case of a locally enhanced resistivity. For a parameter-dependent resistivity we find a 26% decrease in magnetic energy in the current sheet. We find dust-neutral relative flow velocities that are a factor of two greater than the dust Alfvén velocity. We then explore the implications of these flows on aerodynamic drag heating of the dust particles.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birk, G. T., Kopp, A. and Shukla, P. K. 1996 Generalized magnetohydrodynamic equations for partially ionized dusty magnetoplasmas: derivation and applications. Phys. Plasmas 3, 35643572.CrossRefGoogle Scholar
Birk, G. T. and Wiechen, H. M. 2001 Resistive tearing mode instabilities in partially ionised dusty plasmas. Proc. ISSS-6, Copernikus Society, p. 222.Google Scholar
Desch, S. J. and Connolly, H. C. 2001 A model of the thermal processing of particles in solar nebula shocks: application to the cooling rates of chondrules. Met. Planet. Sci. 37, 183.CrossRefGoogle Scholar
Galli, D. and Shu, F. H. 1993 Collapse of magnetized molecular cloud cores. II. Numerical results. The Astrophys. J. 417, 243.CrossRefGoogle Scholar
Hesse, M. and Birn, J. 1993 Three-dimensional magnetotail equilibria by numerical relaxation techniques. J. Geophys. Res. 98, 3973.CrossRefGoogle Scholar
Hewins, R. H. 1997 Chondrules. Ann. Rev. Earth Planet. Sci. 25, 61.CrossRefGoogle Scholar
Levy, E. H. and Araki, S. 1989 Magnetic reconnection flares in the protoplanetary nebula and the possible origin of meteorite chondrules. Icarus 81, 74.CrossRefGoogle Scholar
Levy, E. H. and Sonett, C. P. 1978 Meteorite magnetism and the early solar system magnetic fields. In: Protostars and Planets, Proc. IAU Colloq. 52, Gehrels, T. (ed.), Tuscon, AZ, University of Arizona Press, 516532.Google Scholar
Russell, C. T., Saunders, M. A.Phillips, J. L. and Fedder, J. A. 1986 Near-tail reconnection as the cause of cometary tail disconnections. J. Geophys. Res. 91, 14171423.CrossRefGoogle Scholar
Sano, T., Miyama, S. M., Umebayashi, T. and Nakano, T. 2000 Magnetorotational instability in protoplanetary disks. II. Ionization stat and unstable regions. Astrophys. J. 543, 486501.CrossRefGoogle Scholar
Schröer, A., Birk, G. T. and Kopp, A. 1998 A three-dimensional partially ionized dusty magnetoplasma code. Comput. Phys. Comm. 112, 722.CrossRefGoogle Scholar
Sears, D. 2004 The Origin of Chondrules and Chondrites. Cambridge: Planetary Science Cambridge.CrossRefGoogle Scholar
Shukla, P. K. 1994 Shielding of a slowly moving test charge in dusty plasmas. Phys. Plasmas 1, 13621363.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: IOP Publishing.CrossRefGoogle Scholar
Shukla, P. K. and Rahman, H. U. 1996 Magnetohydrodynamics of dusty plasmas. Phys. Plasmas 3, 430431.CrossRefGoogle Scholar
Shukla, P. K., Birk, G. T. and Bingham, R. 1995 Vortex streets driven by sheared flow and applications to black aurora. Geophys. Res. Lett. 22, 671674.CrossRefGoogle Scholar
Sonett, C. P. 1979 On the origin of chondrules. Geophys. Res. Lett. 8, 677.CrossRefGoogle Scholar
Tajima, T. 1989 Computational Plasma Physics: With Applications to Fusion and Astrophysics. Reading, MA: Addison-Wesley.Google Scholar
Treumann, R. A. and Baumjohann, W. 2001 Advanced Space Plasma Physics. London: Imperial College Press.Google Scholar
Ugai, M. 1992 Computer studies on development of the fast reconnection mechanism for different resistivity models. Phys. Fluids B 4, 29532963.CrossRefGoogle Scholar
Wood, J. A. 1984 On the formation of meteoritic chondrules by aerodynamic drag heating in the Solar nebula. Earth Planet. Sci. Lett. 70, 1126.CrossRefGoogle Scholar
Yi, Y., Caputo, F. M. and Brandt, J. C. 1994 Disconnection events (DEs) and sector boundaries: the evidence from comet Halley 1985–1986. Planet. Space Sci. 42, 705720.CrossRefGoogle Scholar