Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T06:39:57.992Z Has data issue: false hasContentIssue false

Three-dimensional cylindrical Kadomtsev–Petviashvili equation in a dusty electronegative plasma

Published online by Cambridge University Press:  29 January 2010

W. M. MOSLEM
Affiliation:
Department of Physics, Faculty of Science, Port Said, Suez Canal University, Egypt ([email protected])
U. M. ABDELSALAM
Affiliation:
Department of Mathematics, Faculty of Science, Fayoum University, Egypt
R. SABRY
Affiliation:
Theoretical Physics Group, Department of Physics, Faculty of Science, Mansoura University, Damietta Branch, New Damietta 34517, Egypt
E. F. EL-SHAMY
Affiliation:
Theoretical Physics Group, Department of Physics, Faculty of Science, Mansoura University, Damietta Branch, New Damietta 34517, Egypt
S. K. EL-LABANY
Affiliation:
Theoretical Physics Group, Department of Physics, Faculty of Science, Mansoura University, Damietta Branch, New Damietta 34517, Egypt

Abstract

The hydrodynamic equations of positive and negative ions, Boltzmann electron density distribution and Poisson equation with stationary dust particles are used along with the reductive perturbation method to derive a three-dimensional cylindrical Kadomtsev–Petviashvili equation. The generalized expansion method, used to obtain a new class of solutions, admits a train of well-separated bell-shaped periodic pulses. At certain condition, these periodic pulses degenerate to solitary wave solutions. The effects of the physical parameters on the solitary pulses are examined. Finally, the present results should elucidate the properties of ion-acoustic solitary pulses in multi-component plasmas, particularly in Earth's ionosphere.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Massey, H. 1976 Negative Ions, 3rd edn.Cambridge: Cambridge University Press, p. 663; Swider, W. 1988 In: Ionospheric Modeling (ed. Korenkov, J. N.). Basel: Birkhauser, p. 403; Portnyagin, Yu. I. et al. 1992 Adv. Space Sci. Rev. 12, 121.Google Scholar
[2]Chaizy, P. H. et al. 1991 Nature (London) 349, 393.CrossRefGoogle Scholar
[3]Gottscho, R. A. and Gaebe, C. E. 1986 IEEE Trans. Plasma Sci. 14, 92.CrossRefGoogle Scholar
[4]Bascal, M. and Hamilton, G. W. 1979 Phys. Rev. Lett. 42, 1538.CrossRefGoogle Scholar
[5]Jacquinot, J., McVey, B. D. and Scharer, J. E. 1977 Phys. Rev. Lett. 39, 88; Nakamura, Y., Odagiri, T. and Tsukabayashi, I. 2001 Plasma Phys. Control. Fusion 39, 115004; Weingarten, A., Arad, R., Maron, Y. and Fruchtman, A. 2001 Phys. Rev. Lett. 87, 11504.CrossRefGoogle Scholar
[6]Ichiki, R., Yoshimura, S., Watanabe, T., Nakamura, Y. and Kawai, Y. 2002 Phys. Plasmas 9, 4481.CrossRefGoogle Scholar
[7]Coates, A. J., Crary, F. J., Lewis, G. R., Young, D. T., Waite, J. H. Jr., and Sittler, E. C. Jr., 2007 Geophys. Res. Lett. 34, L22103.Google Scholar
[8]Melandso, F. and Shukla, P. K. 1995 Planet. Space Sci. 43, 635.CrossRefGoogle Scholar
[9]Klumov, B. A., Ivlev, A. V. and Morfill, G. 2003 JETP Lett. 78, 300.CrossRefGoogle Scholar
[10]Kim, S. H. and Merlino, R. L. 2006 Phys. Plasmas 13, 052118.CrossRefGoogle Scholar
[11]Merlino, R. L. and Kim, S. H. 2006 Appl. Phys. Lett. 89, 091501.CrossRefGoogle Scholar
[12]Rapp, M., Hedin, J., Strelnikova, J., Friedrich, M., Gumbel, J. and Lübken, F.-J. 2005 Geophys. Res. Lett. 32, L23821.CrossRefGoogle Scholar
[13]Rosenberg, M. and Merlino, R. L. 2007 Planet. Space Sci. 55, 1464.CrossRefGoogle Scholar
[14]Verheest, F. 2000 Waves in Dusty Space Plasmas. Dordrecht: Kluwer Academic; Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics and references therein.CrossRefGoogle Scholar
[15]Sayed, F., Haider, M. M., Mamun, A. A., Shukla, P. K., Eliasson, B. and Adhikary, N. 2008 Phys. Plasmas 15, 063701.CrossRefGoogle Scholar
[16]Mamun, A. A., Cairns, R. A. and Shukla, P. K. 2009 Phys. Lett. A 373, 2355; Mamun, A. A., Shukla, P. K. and Eliasson, B. 2009 Phys. Rev. E 80, 046406.CrossRefGoogle Scholar
[17]Ghim (Kim), Y. and Hershkowitz, N. 2009 Appl. Phys. Lett. 94, 151503.CrossRefGoogle Scholar
[18]Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
[19]Xue, J.-K. 2003 Phys. Plasmas 10, 3430.CrossRefGoogle Scholar
[20]Sabry, R., Zahran, M. A. and Fan, E. 2004 Phys. Lett. A 326, 93; Sabry, R. and El-Taibany, W. F. 2008 Nonlinear Analysis 69, 2763; Sabry, R., Moslem, W. M., Haas, F., Ali, S. and Shukla, P. K. 2008 Phys. Plasmas 15, 122308.CrossRefGoogle Scholar
[21]Dauxois, T. and Peyrard, M. 2005 Physics of Solitons. Cambridge: Cambridge University Press, pp. 3289.Google Scholar