Published online by Cambridge University Press: 13 March 2009
The heat conductivity of a laser-created plasma heated by inverse bremsstrahlung absorption is investigated in the vicinity of a self-similar state (SSS), taken as reference state. Under certain conditions, the slowly varying macroscopic quantities obey true, local hydrodynamical equations and a well-defined, positive, heat conductivity exists. The latter is strongly time-dependent through the unperturbed temperature. Its value, compared to the classical heat conductivity at the same temperature, shows a reduction of about 20%. It is shown that, for high intensities and/or long wavelengths, the linear heat conduction theory necessarily breaks down, even if the temperature gradient is very small.