Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T05:04:33.392Z Has data issue: false hasContentIssue false

Theory of thermal solitary vortices in current-carrying edge plasmas

Published online by Cambridge University Press:  13 March 2009

J. P. Mondt
Affiliation:
Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545
J. Liu
Affiliation:
Department of Physics, University of Texas at Austin, Austin, TX 78712

Abstract

It is shown that the nonlinear dynamics of current-convective excitations in current-carrying edge plasmas allows for the existence of solitary vortices despite the effects of magnetic shear and dissipation in the form of parallel electron thermal conductivity. The potential importance of this finding with regard to heat balance is pointed out.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antipov, S. V., Nezlin, M. V., Snezhkin, E. N. & Trubnikov, A. S. 1984 Nonlinear and Turbulent Processes in Physics (ed. Sagdeev, R. Z.), vol. 2, p. 665. Harwood.Google Scholar
Braginskii, S. I. 1965 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 1, p. 205. Consultants Bureau.Google Scholar
Flierl, G. R., Larichev, V. D., McWilliams, J. C. & Reznik, G. M. 1980 Dyn. Atmos. and Oceans, 5, 1.CrossRefGoogle Scholar
Garcia, L., Diamond, P. H., Carreras, B. A. & Callen, J. D. 1985 Phys. Fluids, 28, 2147.Google Scholar
Golin'Ko, V. I., Dryuma, V. S. & Stepanyants, Yu. A. 1984 Nonlinear and Turbulent Processes in Physics (ed. Sagdeev, R. Z.), vol. 3, p. 1353. Harwood.Google Scholar
Hasegawa, A., Kodama, Y. & McLennan, C. G. 1979 Phys. Fluids 22, 2122.Google Scholar
Hasegawa, A. & Mima, K. 1978 Phys. Fluids, 21, 87.Google Scholar
Jacobson, A. R., Rusbridge, M. G. & Burkhardt, L. C. 1984 J. Appl. Phys. 55, 125.Google Scholar
Johnson, R. S. 1980 J. Fluid Mech. 97, 701.Google Scholar
Kadomtsev, B. B. & Pogutse, O. P. 1970 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 5, p. 249. Consultants Bureau.Google Scholar
Laedke, E. W. & Spatschek, K. H. 1985 Phys. Fluids, 28, 1008.Google Scholar
Larichev, V. D. & Reznik, G. M. 1976 Dokl. Akad. Nauk. 231, 1077.Google Scholar
Makino, M., Kamimura, T. & Taniuti, T. 1981 J. Phys. Soc. Japan, 50, 980.Google Scholar
Meiss, J. & Horton, W. 1983 Phys. Fluids, 26, 990.Google Scholar
Mikhailovskii, A. B., Aburdzhaniya, G. D., Onishchenko, O. G. & Sharapov, S. E. 1984 Phys. Lett. 110A, 503.Google Scholar
Mondt, J. P. & Goedert, J. 1985 Phys. Fluids, 28, 1816.Google Scholar
Pavlenko, V. P. & Petviashvili, V. I. 1983 Soviet J. Plasma Phys. 9, 603.Google Scholar
Petviashvili, V. I. 1984 Nonlinear and Turbulent Processes in Physics (ed. Sagdeev, R. Z.), vol. 2, p. 979. Harwood.Google Scholar
Shukla, P. K., Yu, M. Y. & Varma, R. K. 1985 Phys. Fluids, 28, 1719.CrossRefGoogle Scholar
Stern, M. E. 1975 J. Mar. Res. 33, 1.Google Scholar
Taniuti, T. & Hasegawa, A. 1982 Physica Scripta, T2, 529.Google Scholar
Weiland, J. & Mondt, J. P. 1985 Los Alamos National Laboratory Document LA-UR-85–327.Google Scholar
Zabusky, N. & McWilliams, J. C. 1982 Phys. Fluids, 25, 2175.Google Scholar