Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T00:38:14.586Z Has data issue: false hasContentIssue false

A theory of the relaxation of tokamak discharges

Published online by Cambridge University Press:  13 March 2009

John E. Brandenburg
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, U.S.A.

Abstract

Tokamak equilibria are considered as extremum magnetic-energy states. Two quadratic invariants ∫Ψd3x, and ∫A.Bd3x are found to yield finite-beta equilibria in toroidal geometry. The theory predicts ‘bell’-shaped current profiles for relaxed discharges at finite beta. A ‘main-sequence’ curve of ql/q0 versus βp is presented for circular discharges with low ql and is found to form a limiting curve for experimental data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berry, L. A. et al. 1985 Proceedings of 1985 IAEA Conference on Plasma Physics and Controlled Fusion. IAEA-CN-33/A5–1.Google Scholar
Bhattacharjee, A. & Dewar, R. L. 1982 Phys. Fluids, 25, 887.CrossRefGoogle Scholar
Brandenburg, J. E. 1981 APS Bull. 26, 905.Google Scholar
Brandenburg, J. E. 1986 Lawrence Livermore National Laboratory Report UCRL-86431.Google Scholar
Brandenburg, J. E. 1987 A theory of the relaxation of finite beta toroidal plasmas, Paper 4:21, Annual Sherwood Theory Meeting, Santa Fe, New Mexico, April 1982: Lawrence Livermore National Laboratory Report UCRL-87096.Google Scholar
Budney, R. et al. 1984 J. Nucl. Mater. 121, 294.CrossRefGoogle Scholar
Hameiri, E. & Hammer, J. H. 1982 Phys. Fluids, 25, 1855.CrossRefGoogle Scholar
Hsu, J. Y. & Lee, J. K. 1982 Minimum energy states with finite pressure in current carrying plasmas, Paper 7:10, Annual Sherwood Theory Meeting, Santa Fe, New Mexico, April 1982.Google Scholar
Kaye, S. M. et al. 1984 J. Nucl. Mater. 121, 115.CrossRefGoogle Scholar
Maschke, E. K. 1973 J. Plasma Phys. 15, 535.CrossRefGoogle Scholar
Montgomery, D. & Turner, L. 1982 Phys. Fluids, 25, 345.CrossRefGoogle Scholar
Munro, J. K., Charlton, L. A., Strickler, D. J., Cooper, W. A., Hogan, J. T. & Swain, D. W. 1982 Nucl. Fusion, 22, 599.CrossRefGoogle Scholar
Overskei, D. O., Gondhalekar, A., Hutchinson, I., Pappas, D., Parker, R., Rice, J., Scaturro, L. & Wolf, S. 1979 J. Magn. Mater. 11, 363.CrossRefGoogle Scholar
Taylor, J. B. 1974 Phys. Rev. Lett. 33, 1139.CrossRefGoogle Scholar
Wagner, F. et al. 1982 Phys. Rev. Lett. 49, 1408.CrossRefGoogle Scholar