Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T06:19:29.488Z Has data issue: false hasContentIssue false

Theory and simulations of whistler wave propagation

Published online by Cambridge University Press:  01 February 2009

DASTGEER SHAIKH*
Affiliation:
Institute of Geophysics and Planetary Physics (IGPP), University of California, Riverside, CA 92521, USA ([email protected])

Abstract

A linear theory of whistler waves is developed within the paradigm of a two-dimensional incompressible electron magnetohydrodynamics model. Exact analytic wave solutions are obtained for small-amplitude whistler waves that exhibit magnetic field topological structures consistent with the observations and our simulations in a linear regime. In agreement with experiment, we find that the parallel group velocity of the wave is large compared to its perpendicular counterpart. Numerical simulations of collisional interactions demonstrate that the wave magnetic field either coalesces or repels depending upon the polarity of the associated current. In the nonlinear regime, our simulations demonstrate that the evolution of the wave magnetic field is governed essentially by the nonlinear Hall force.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Helliwell, A. 1965 Whistlers and Related Ionospheric Phenomena. Stanford, CA: Stanford University Press.Google Scholar
[2]Cattell, C. et al. 2008 Discovery of very large amplitude whistler-mode waves in Earth's radiation belts. Geophys. Res. Lett. 35, L01105.CrossRefGoogle Scholar
[3]Russell, C. T., Zhang, T. L., Delva, M., Magnes, W., Strangeway, R. J. and Wei, H. Y. 2007 Lightning on Venus inferred from whistler-mode waves in the ionosphere. Nature 450 (7170), 661662.CrossRefGoogle ScholarPubMed
[4]Stenberg, G. et al. 2007 Internal structure and spatial dimensions of whistler wave regions in the magnetopause boundary layer. Ann. Geophys. 25 (11), 24392451.CrossRefGoogle Scholar
[5]Wei, X. H., Cao, J. B., Zhou, G. C., Santolk, O., Rme, H., Dandouras, I., Cornilleau-Wehrlin, N., Lucek, E., Carr, C. M. and Fazakerley, A. 2007 Cluster observations of waves in the whistler frequency range associated with magnetic reconnection in the Earth's magnetotail. J. Geophys. Res. 112 (A10), A10225.Google Scholar
[6]Scholer, M. and Burgess, D. 2007 Whistler waves, core ion heating, and nonstationarity in oblique collisionless shocks. Phys. Plasmas 14, 072103-072103-11.CrossRefGoogle Scholar
[7]Bespalov, P. A. 2006 Excitation of whistler waves in three spectral bands in the radiation belts of Jupiter and Saturn. In: European Planetary Science Congress, Berlin, Germany, 18–22 September 2006, Germany: EGU (European Geosciences Union), p. 461.Google Scholar
[8]Mason, R. J., Auer, P. L., Sudan, R. N., Oliver, B. E., Ceyler, C. E. and Greenly, J. B. 1993 Nonlinear magnetic field transport in opening switch plasmas. Phys Fluids B 5, 1115.CrossRefGoogle Scholar
[9]Bulanov, S. V., Pegoraro, F. and Sakharov, A. S. 1992 Magnetic reconnection in electron magnetohydrodynamics. Phys. Fluids B 4, 2499.CrossRefGoogle Scholar
[10]Zhou, H. B., Papadopolous, K., Sharma, A. S. and Chang, C. L. 1996 Phys. Plasmas 3, 1484.CrossRefGoogle Scholar
[11]Stenzel, R. L. 1976 Whistler wave propagation in a large magnetoplasma. Phys. Fluids 19 (6), 857.CrossRefGoogle Scholar
[12]Stenzel, R. L. 1975 Self-ducting of large-amplitude whistler waves. Phy. Rev. Lett. 35 (9), 574.CrossRefGoogle Scholar
[13]Urrutia, J. M. and Stenzel, R. L. 1988 Transport of current by whistler waves. Phy. Rev. Lett. 62 (3), 272.CrossRefGoogle Scholar
[14]Stenzel, R. L. and Urrutia, J. M. 1990 Force-free electromagnetic pulses in a laboratory plasma. Phy. Rev. Lett. 65 (16), 2011.CrossRefGoogle Scholar
[15]Stenzel, R. L., Urrutia, J. M. and Rousculp, C. L. 1993 Pulsed currents carried by whistlers. I – Excitation by magnetic antennas. Phys. Fluids B 5 (2), 325.CrossRefGoogle Scholar
[16]Urrutia, J. M., Stenzel, R. L. and Rousculp, C. L. 1994 Pulsed currents carried by whistlers. II. Excitation by biased electrodes. Phys. Plasmas 1 (5), 1432.CrossRefGoogle Scholar
[17]Eliasson, B. and Shukla, P. K. 2007 Dynamics of whistler spheromaks in magnetized plasmas. Phys. Rev. Lett. 99, 205005.CrossRefGoogle ScholarPubMed
[18]Shaikh, D., Das, A., Kaw, P. K. and Diamond, P. 2000 Whistlerization and anisotropy in two-dimensional electron magnetohydrodynamic turbulence. Phys. Plasmas 7, 571.Google Scholar
[19]Shaikh, D., Das, A. and Kaw, P. K. 2000 Hydrodynamic regime of two-dimensional electron magnetohydrodynamics. Phys. Plasmas 7, 1366.Google Scholar
[20]Shaikh, D. and Zank, G. P. 2003 Anisotropic turbulence in two-dimensional electron magnetohydrodynamics. Astrophys. J. 599, 715.Google Scholar
[21]Shaikh, D. 2004 Generation of coherent structures in electron magnetohydrodynamics. Phys. Scripta 69, 216.Google Scholar
[22]Shaikh, D. and Zank, G. P. 2005 Driven dissipative whistler wave turbulence. Phys. Plasmas 12, 122310.CrossRefGoogle Scholar
[23]Kingsep, A. S., Chukbar, K. V. and Yan'kov, V. V. 1990 Reviews of Plasma Physics, Vol. 16. New York: Consultants Bureau.Google Scholar
Gordeev, A. V., Kingsep, A. S. and Rudakov, L. I. 1994 Phys. Reports 243, 215315.CrossRefGoogle Scholar
[24]Arfken, G. B. and Weber, H. J. 1995 Mathematical Methods for Physicists. New York: Academic Press.Google Scholar
[25]Witham, G. B. 1974 Linear and Nonlinear Waves. New York: Wiley, p. 371.Google Scholar
[26]Gradsteyn, I. S. and Rhyzik, I. M. 1994 Table of Integrals Series, and Products. New York: Academic Press.Google Scholar
[27]Shukla, P. K. 1978 Modulational instability of whistler-mode signals. Nature 274, 874.CrossRefGoogle Scholar
[28]Stenflo, L., Yu, M. Y. and Shukla, P. K. 1986 Electromagnetic modulations of electron whistlers in plasmas. J. Plasma Phys. 36, 447.CrossRefGoogle Scholar
[29]Stenflo, L., Shukla, P. K. and Yu, M. Y. 1986 Excitation of electrostatic fluctuations by thermal modulation of whistlers. J. Gepophys. Res. 91, 11369.CrossRefGoogle Scholar
[30]Shukla, P. K., Yu, M. Y. and Spatschek, K. H. 1975 Brillouin backscattering instability in magnetized plasmas. Phys. Fluids 18, 265.CrossRefGoogle Scholar
[31]Shukla, P. K. and Stenflo, L. 1984 Nonlinear propagation of electromagnetic waves in magnetized plasmas. Phys. Rev. A 30, 2110.CrossRefGoogle Scholar
[32]Shukla, P. K. and Stenflo, L. 1999 Electron magnetohydrodynamics of inhomogeneous plasmas. Phys. Lett. A 259, 49.CrossRefGoogle Scholar