Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T06:30:01.444Z Has data issue: false hasContentIssue false

Theoretical models for resonance oscifiations of inhomogeneous plasmast

Published online by Cambridge University Press:  13 March 2009

G. Dorman
Affiliation:
Department of Physics, Polytechnic Institute of Brooklyn, Brooklyn, New York

Abstract

The resonance oscifiations of low temperature, bounded, non-magnetized in-homogeneous plasmas are studied using different methods of solving the linearized Vlasov—Maxwell equations. A low-temperature expansion method of solving the orbit-integral solution of the Vlasov equation is compared to fluid descriptions of the plasma using the truncated moment equations. Numerical results for a one-dimensional plasma slab show qualitative agreement but some quantitative discrepancies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported in part by the Science Development Program of theNational Science Foundation, Grant No. SDP-GU-1557.

References

REFERENCES

Baldwin, D. E. 1967 J. Plasma Phys. 1, 289.CrossRefGoogle Scholar
Barston, E. M. 1964 Ann. Phys. 29, 282.Google Scholar
Barston, E. M.. 1967 a J. Math. Phys. 8, 523.CrossRefGoogle Scholar
Barston, E. M. 1967 b J. Math. Phys. 8, 1886.Google Scholar
Barston, E. M.. 1968 J. Math. Phys. 9, 2069.CrossRefGoogle Scholar
Dattner, A. 1957 b Ericsson Tech. 13, 309.Google Scholar
Dattner, A. 1957 b Ericsson Tech. 13, 350.Google Scholar
Dattner, A. 1963 Phys. Rev. Lett. 10, 205.CrossRefGoogle Scholar
Dorman, G. 1968 J. Plasma Phys. 2, 557.CrossRefGoogle Scholar
Gould, R. W. 1959 Proceedings of the Linde Conference on Plasma Oscillations.Google Scholar
Harker, K. J. 1905 Phys. Fluids 8, 1846.CrossRefGoogle Scholar
Harker, K. J., Kino, G. S. & Eitelbach, D. L. 1968 Phys. Fluids 11, 425.CrossRefGoogle Scholar
Harp, R. S., Kino, G. S. & Pavkovich, J. 1963 Phys. Rev. Lett. 11, 310.Google Scholar
Leavens, W. 1965 J. Res. Natnl. Bur. Stand. (Radio Sci.) 69 D, 1321.Google Scholar
Messian, A. M. & Vandenplas, P. E. 1962 a Physica 28, 537.Google Scholar
Messian, A. M. & Vandenplas, P. E. 1962 b Plasma Phys. 4, 267.Google Scholar
Messian, A. M. & Vandenplas, P. E. 1964 Plasma Phys. 6, 459.Google Scholar
Messian, A. M. & Vandenplas, P. E. 1965 Nucl. Fusion 5, 47.Google Scholar
Messiah, A. 1965 Quantum Mechanics, Vol. II. New York: John Wiley and Sons, Inc.Google Scholar
Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics, p. 1117. New York: McGraw-Hill Book Co., Inc.Google Scholar
O'Brien, B. B. Jr, 1967 Plasma Phys. 9, 282.CrossRefGoogle Scholar
Parker, J. V., Nickel, J. C. & Gould, R. W. 1964 Phys. Fluids 7, 1489.Google Scholar
Parker, J. V. 1963, 1964 Technical Reports No. 20 (May) and No. 23 (June); Contract Nonr 220(13), California Institute of Technology.Google Scholar
Pavkovich, J. 1963 Stanford University Microwave Lab. Report No. 1093.Google Scholar
Romell, D. 1951 Nature, Lond. 167, 243.Google Scholar