Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T14:19:16.603Z Has data issue: false hasContentIssue false

Temporal evolution of magnetic recomiexion in the vicinity of a magnetic neutral line

Published online by Cambridge University Press:  13 March 2009

T. G. Forbes
Affiliation:
NOAA/ERL/Space Environment Laboratory, Boulder, Colorado 80303
T.W. speiser
Affiliation:
Department of Astro-Geophysics, University of Colorado, Boulder, Colorado 80303

Abstract

Following Dungey's original magnetohydrodynamic formulation, a solution is obtained for the nonlinear evolution of a current discharge in the vicinity of a magnetic neutral line. For an ideal gas with constant conductivity and uniform mass density we obtain a particular exact solution in the limit of an initial, nearly sheet-like configuration. This particular solution implies special boundary conditions for the pressure and electric field at the surface of the conductor. If These conditions are not met, then the solution eventually breaks down before the current density becomes infinite. The time required for complete breakdown is determined by the wave propagation times from the surface of the fluid to the neutral line and by the diffusion time for the magnetic field through the fluid. For large conductivity and a small sound speed, the maximum current density achieved at the time of the solution's complete breakdown depends upon the ratio of the characteristic diffusion time to the Alfvén wave propagation time. In the limit of infinite conductivity or infinite extension of the fluid, the current density along the neutral line becomes infinite at π/23/2 times the Alfvénic scale time. At this same time the inflow Alfvenic Mach number approaches 21/2i while the outflow Alfvenic Mach number approaches infinity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anzer, U., 1973, Solar Phys, 30, 459.CrossRefGoogle Scholar
Baum, P. J., Bratenahi, A. & White, R. S., 1973 Phys. Fluids, 16, 226.CrossRefGoogle Scholar
Birminagham, T.J., 1968, J. Geophys. Res. 73, 5505.CrossRefGoogle Scholar
Burtion, R. L. & Jahn, R. G., 1968. Phys. Fluids, 11, 1231.CrossRefGoogle Scholar
Chapman, S. & Kendall, P. C., 1963. Proc. Roy. Soc. A 271, 435.Google Scholar
Chapman, S. & Kendall, P. C., 1966, Phys. Fluids, 9, 2306.CrossRefGoogle Scholar
Chen, Y.G., Chervin, R. M., Robertson, S. & Taussig, R. T., 1974, Phys. Fluids, 17, 2014.CrossRefGoogle Scholar
Coppi, B., Laval, G. & Pellat, R., 1966, Phys. Rev. Lett. 16, 1207.CrossRefGoogle Scholar
Cowling, T. G., 1953, The Sun. Kuipor.Google Scholar
Dungey, J.W. 1953, Phil. Mag. 44, 725.CrossRefGoogle Scholar
Dungey, J. W., 1958, Electromagnetic Phenomena in Cosmical Physics. (Ed. Lehnert, B..) Cambridge University Press.Google Scholar
Hayashi, T. & Sato, T., 1978, J. Geophys. Res. 83, 217.CrossRefGoogle Scholar
Imshennik, V. S. & Syrovatskii, S. I., 1967, Soviet Phys. JETP, 25, 656.Google Scholar
Landau, L.D. & Lifshitz, E. M., 1960, Electrodynamics of Continuous Media. Addison-Wesley.Google Scholar
Okuabu, N., Okamura, S. & Kawahima, N., 1974, J. Geophys. Res. 79, 1977.Google Scholar
Roberts, P. H., 1967, An Introduction to Magnetohycirodynamics. American Elsevior.Google Scholar
Schindler, K., 1974, J. Geophys. Res. 79, 2803.CrossRefGoogle Scholar
Syrovatskii, S., 1966, Soviet Phys. JETP, 23, 754.Google Scholar
Syrovatskii, S. I., Frank, A. G. & Khodzhaev, A. Z., 1972, Soviet Phys. JETP Lett. 15, 94.Google Scholar
Tsuda, T. & Ugai, M., 1977, J. Plasma Phys. 18, 451.CrossRefGoogle Scholar
Uberoi, M. S., 1963, Phys. Fluids, 6, 1379.CrossRefGoogle Scholar
Uberoi, M. S., 1966, Phys. Fluids, 9, 2307.CrossRefGoogle Scholar
Ugai, M. & Tsuda, T., 1977, J. Plasma Phys. 17, 337.CrossRefGoogle Scholar
Vasyliunas, V. M. 1975 Rev. Geophys. Space Phys. 13, 303.CrossRefGoogle Scholar