Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T14:28:03.419Z Has data issue: false hasContentIssue false

A study of the mass ratio dependence of the mixed species collision integral for isotropic velocity distribution functions

Published online by Cambridge University Press:  13 March 2009

A. J. M. Garrett
Affiliation:
Cavendish Laboratory, University of Cambridge

Extract

This paper is concerned with the Boltzmann collision integral for the one-particle distribution function of a test species of particle undergoing elastic collisions with particles of a second species which is in thermal equilibrium. This expression is studied as a function of the ratio of the masses of the test and host particles for the case when the test particle distribution function is isotropic in velocity space. The analysis can also be considered as referring to the zeroth-order spherical harmonic in velocity space of a general velocity distribution function. The resulting collision term, due originally to Davydov, is of Fokker–Planck form and effectively describes a diffusion in energy. The method of derivation employed here is more systematic than hitherto, and is used to calculate the first correction to the Davydov term. Differences between classical and quantum cross-sections are considered; the correction to the Davydov term is checked by means of a comparison with the exact solution of the associated eigenvalue problem for the special case of Maxwell interactions treated classically.

Type
Articles
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Akama, H. & Siegel, A. 1965 Physica, 31, 1493.CrossRefGoogle Scholar
Andersen, K. & Shuler, K. E. 1964 J. Chem. Phys., 40, 633.CrossRefGoogle Scholar
Bayet, M. 1958 Physique Electronique des Gaz et des Solides. Masson.Google Scholar
de Boer, J. & Bird, R. B. 1954 Physica, 20, 185.CrossRefGoogle Scholar
Braglia, G. L. & Caraffini, G. L. 1974 Riv. Mat. Univ. Parma, 3, 81.Google Scholar
Braglia, G. L. 1980 Riv. Nuovo Cimento, 3, 1.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-Uniform Gases, 1st ed. 1939, 3rd ed. 1970. Cambridge University Press.Google Scholar
Cornille, H. & Gervois, A. 1980 a Proceedings of Workshop R.C.P. 264 on Inverse Problems, Montpellier, p. 270. CNRS.Google Scholar
Cornille, H. & Gervois, A. 1980 b J. Stat. Phys., 23, 167.CrossRefGoogle Scholar
Davydov, B. 1935 Phys. Zeits. Sovj. Union, 8, 59.Google Scholar
Kumar, K. 1967 Aust. J. Phys., 20, 205.CrossRefGoogle Scholar
Kumar, K. 1980 Aust. J. Phys. 33, 449.CrossRefGoogle Scholar
Kumar, K., Skullerud, H. R. & Robson, R. E. 1980 Aust. J. Phys. 33, 343.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1977 Quantum Mechanics (Non-Relativistic Theory), 3rd ed. Pergamon.Google Scholar
Lin, S. L., Robson, R. E. & Mason, E. A. 1979 J. Chem. Phys. 71, 3483.CrossRefGoogle Scholar
Viehland, L. A. & Mason, E. A. 1975 Ann. Phys. (N.Y.), 91, 499.CrossRefGoogle Scholar
Viehland, L.A. & Mason, E. A. 1978 Ann. Phys. (N.Y.), 110, 287.CrossRefGoogle Scholar
Waldmann, L. 1958 Handbuch der Physik (ed. Flugge, S.), vol. XII, p. 295. Springer.Google Scholar
Wang Chang, C. S. & Uhlenbeck, G. E. 1970 a Studies in Statistical Mechanics (ed. de Boer, J. and Uhlenbeck, G. E.), vol. 5, p. 43. North-Holland.Google Scholar
Wang Chang, C. S. & Uhlenbeck, G. E. 1970 b Studies in Statistical Mechanics (ed. de Boer, J. and Uhlenbeck, G. E.), vol. 5, p. 76. North-Holland.Google Scholar
Wannier, G. H. 1971 Am. J. Phys., 39, 281.CrossRefGoogle Scholar