Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T16:54:52.315Z Has data issue: false hasContentIssue false

Study of lower-hybrid wave propagation in the presence of low-frequency fluctuations

Published online by Cambridge University Press:  13 March 2009

B. Fischer
Affiliation:
Institut für Experimentalphysik II, Ruhr-Universität Bochum, D-4630 Bochum 1, Germany
M. Krämer
Affiliation:
Institut für Experimentalphysik II, Ruhr-Universität Bochum, D-4630 Bochum 1, Germany

Abstract

Phase-sensitive probe diagnostics as well as two-point-correlation analysis of radio-frequency probe signals are applied to investigate small-amplitude lower-hybrid (LH) waves launched into a linear nonuniform plasma column by a slow-wave antenna. The LH wave propagation in the inhomogeneous plasma is described by a model taking into account the wavenumber spectrum of the antenna. Special attention is focused on the interaction of the LH waves with the low-frequency density fluctuations. The LH frequency and wavenumber spectra observed can be explained by scattering of the LH waves from the (incoherent) low-frequency density fluctuations. Moreover, the enhanced damping, which is found to be much higher than expected from collisional and electron Landau dampings, is correlated with the level of low-frequency fluctuations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, P. L. & Perkins, F. W. 1983 a Phys. Fluids 26, 2537.CrossRefGoogle Scholar
Andrews, P. L. & Perkins, F. W. 1983 b Phys. Fluids 26, 2546.CrossRefGoogle Scholar
Beall, J. M., Kim, Y. C. & Powers, E. J. 1982 J. Appl. Phys. 53, 3933.CrossRefGoogle Scholar
Bellan, P. M. & Wong, K. L. 1978 Phys. Fluids 21, 592.CrossRefGoogle Scholar
Berger, R. E., Chen, L., Kaw, P. K. & Perkins, F. W. 1977 Phys. Fluids 20, 1864.CrossRefGoogle Scholar
Bonoli, P. T. & Ott, E. 1982 Phys. Fluids 25, 359.CrossRefGoogle Scholar
Chu, C., Okuda, H. & Dawson, J. M. 1975 Phys. Fluids 18, 1762.CrossRefGoogle Scholar
Fischer, B. & KräMer, M. 1992 Plasma Physics and Controlled Fusion 34, 1467.CrossRefGoogle Scholar
Fisher, K. R. & Gould, R. W. 1971 Phys. Fluids 14, 857.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Grossmann, W. & Spigler, R. 1985 Phys. Fluids 28, 1783.CrossRefGoogle Scholar
Hsu, J. Y., Chiu, S. C. & Chan, V. S. 1980 Phys. Fluids 23, 1807.CrossRefGoogle Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence. Academic.Google Scholar
KräMer, M., Sollich, N. & Dietrich, J. 1988 J. Plasma Phys. 39, 447.CrossRefGoogle Scholar
Ott, E. 1979 Phys. Fluids 22, 1732.CrossRefGoogle Scholar
Porkolab, M. 1975 Phys. Fluids 17, 1432.CrossRefGoogle Scholar
Porkolab, M. 1984 IEEE Trans. Plasma Sci. 12, 107.CrossRefGoogle Scholar
Satya, Y., Sen, A. & Kaw, P. K. 1974 Nucl. Fusion 14, 19.CrossRefGoogle Scholar
Schmitz, L., Lüthen, G., Derra, G., BöHm, G. & Schlüter, H. 1986 Plasma Phys. Contr. Fusion 27, 891.CrossRefGoogle Scholar
Schuss, J. J., Porkolab, M., Takase, Y., Cope, D., Fairfax, S., Greenwald, M., Gwinn, D., Hutchinson, I. H., Kusse, B., Marmar, E., Overskei, D., Pappas, D., Parker, R. R., Scaturro, L., West, J. & Wolfe, S. 1981 Nucl. Fusion 21, 427.CrossRefGoogle Scholar
Slusher, R. E., Surko, C. M., Schuss, J. J., Parker, R. R., Hutchinson, I. H., Overskei, D. & Scaturro, L. S. 1982 Phys. Fluids 25, 457.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw Hill.Google Scholar
Stix, T. H. 1965 Phys. Rev. Lett. 15, 878.CrossRefGoogle Scholar