Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T13:54:36.773Z Has data issue: false hasContentIssue false

Streamer propagation in non-uniform gaps at ambient atmospheric air pressures

Published online by Cambridge University Press:  27 September 2012

ANTONIS P. PAPADAKIS*
Affiliation:
Department of Electrical Engineering, Frederick University, 7. Y. Frederickou, Nicosia, 1036, Cyprus ([email protected])

Abstract

The streamer propagation in point-plane, non-uniform gaps under high applied electric fields, prior to the impact of primary streamer on cathode, is analyzed. The configuration used is an anode hyperboloid with 50-μm radius of curvature, and a flat plate as the cathode. The applied voltage is 130-kV direct current, and an initial electron is assumed to exist close to the anode in ambient air. The geometry used is a two-dimensional axisymmetry with a gap of 5 cm between the anode and the cathode. It is shown that the streamer is formed on the anode tip as expected, and midway toward the cathode, it separates into two streamers, the primary streamer that continues its propagation toward the cathode, and the branched streamer expanding radially toward the outer boundaries. The qualitative behavior of the discharge is analyzed in terms of streamer speeds, radial and axial electric fields, charged particle densities, and conductive currents. A branched streamer plasma structure was observed along the path of the primary plasma structure expanding radially outwards.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abahazem, A., Merbahi, N., Ducasse, O., Eichwald, O. and Yousfi, M. 2008 Primary and secondary streamer dynamics in pulsed positive corona discharges. IEEE Trans. Plasma Sci. 36 (4), 924925.CrossRefGoogle Scholar
Akyuz, M., Larsson, A., Cooray, V. and Strandberg, G. 2003 3D simulations of streamer branching in air. J. Electrost. 59 (2), 115141.CrossRefGoogle Scholar
Aleksandrov, N. L. and Bazelyan, E. M. 1998 The mechanism of re-breakdown within a post-arc channel in long non-uniform air gaps. J. Phys. D: Appl. Phys. 31, 13431351.CrossRefGoogle Scholar
Arrayas, M., Betelu, S., Fontelos, M. A. and Trueba, J. L. 2008 Fingering from ionization fronts in plasmas. SIAM J. Appl. Math. 68 (4), 11221145.CrossRefGoogle Scholar
Arrayas, M., Ebert, U. and Hundsdorfer, W. 2002 Spontaneous branching of anode-directed streamers between planar electrodes. Phys. Rev. Lett. 88 (17), 174502–14.CrossRefGoogle ScholarPubMed
Arrayas, M. and Fontelos, M. A. 2011 Electric-discharge contour-dynamics model: the effects of curvature and finite conductivity. Phys. Rev. E 84, 026404.CrossRefGoogle ScholarPubMed
Arrayas, M., Fontelos, M. A. and Jimenez, C. 2010 Contour dynamics model for electric discharges. Phys. Rev. E 81, 035401(R).CrossRefGoogle ScholarPubMed
Arrayas, M., Fontelos, M. A. and Trueba, J. L. 2005 Mechanism of branching in negative ionization fronts. Phys. Rev. Lett. 95, 165001.CrossRefGoogle ScholarPubMed
Chen, G. S., Chen, W., He, J. and Qian, H. G. 2010 Observation of the streamer-leader propagation processes of long air-gap positive discharges. IEEE Trans. Plasma Sci. 38 (2), 214217.Google Scholar
Dibben, D. C. and Metaxas, A. C. 1996 Time domain finite element analysis of multimode microwave applicators. IEEE Trans. Magn. 32 (3), 942945.CrossRefGoogle Scholar
Gao, L., Akyuz, M., Larsson, A., Cooray, V. and Scuka, V. 2000 Measurement of the positive streamer charge. J. Phys. D: Appl. Phys. 33, 18611865.CrossRefGoogle Scholar
Georghiou, G. E., Papadakis, A. P., Morrow, R. and Metaxas, A. C. 2005 Numerical modeling of atmospheric pressure gas discharges leading to plasma production. J. Phys. D: Appl. Phys. 38, R303328.CrossRefGoogle Scholar
Hallac, A., Georghiou, G. E. and Metaxas, A. C. 2003 Secondary emission effects on streamer branching in transient non-uniform short-gap discharges. J. Phys. D: Appl. Phys. 36, 2498.CrossRefGoogle Scholar
Kulikovsky, A. A. 1998 Three-dimensional simulation of a positive streamer in air near curved anode. Phys. Lett. A 245, 445452.CrossRefGoogle Scholar
Montijn, C., Ebert, U. and Hundsdorfer, W. 2006 Numerical convergence of the branching time of negative streamers. Phys. Rev. E 73, 065401.CrossRefGoogle ScholarPubMed
Naidis, G. V. 1999 Simulation of streamer-to-spark transition in short non-uniform air gaps. J. Phys. D: Appl. Phys. 32, 26492654.CrossRefGoogle Scholar
Okabe, S. 2007 Insulation properties and degradation mechanism of insulating spacers in gas insulated switchgear (GIS) for repeated/long voltage application. IEEE Trans. Dielectr. Electr. Insul. 14 (1), 101110.CrossRefGoogle Scholar
Pancheshnyi, S., Nudnova, M. and Starikovskii, A. 2005 Development of a cathode-directed streamer discharge in air at different pressures: experiment and comparison with direct numerical simulation. Phys. Rev. E 71, 016407.CrossRefGoogle ScholarPubMed
Pancheshnyi, S. V. and Starikovskii, A. Y. 2003 Two-dimensional numerical modelling of the cathode-directed streamer development in a long gap at high voltage. J. Phys. D: Appl. Phys. 36, 26832691.CrossRefGoogle Scholar
Pancheshnyi, S. V. and Starikovskii, A. Y. 2004 Stagnation dynamics of a cathode-directed streamer discharge in air. Plasma Sources Sci. Technol. 13, B15.CrossRefGoogle Scholar
Papadakis, A. P., Georghiou, G. E. and Metaxas, A. C. 2005 Simulation for the transition from non-thermal to thermal discharges. Plasma Sources Sci. Technol. 14, 250258.CrossRefGoogle Scholar
Papadakis, A. P., Georghiou, G. E. and Metaxas, A. C. 2007 Two-dimensional axisymmetric simulations and the heating effects associated with DC atmospheric pressure discharges during the post-streamer stage. Sci. Meas. Technol. 1 (2), 113120.CrossRefGoogle Scholar
Papadakis, A. P., Georghiou, G. E. and Metaxas, A. C. 2008 New high quality adaptive mesh generator utilized in modelling plasma streamer propagation at atmospheric pressures. J. Phys. D: Appl. Phys. 41, 234019.CrossRefGoogle Scholar
Van Brunt, R. J., Nelson, T. L. and Stricklett, K. L. 2000 Early streamer emission lightning protection systems: an overview. IEEE Trans. Plasma Sci. 16 (1), 524.Google Scholar
Vereshchagin, I. P., Beloglovsky, A. A., Mikheev, A. G., Kondratov, O. I. and van Heesch, E. J. M. 2000 Model of streamer branching. Proceedings of International Conference on Gas Discharges and Their Applications, Glasgow, UK, 3–8 September, pp. 579584.Google Scholar
Yuanxiang, Z., Hanghai, H., Xu, X., Jifeng, C., Yichao, Y., Zhenyu, L., Yuan, C., Deming, Y., Qiong, N., Xidong, L.et al., 2009 High-risk region of bird streamer flashover in high-voltage transmission lines. J. Electrost. 67 (2–3), 311315.Google Scholar
Zhukov, S. V., Beloglovsky, A. A. and Sokolova, M. V. 1999 Positive streamer development in a short gap in air and oxygen. Proceedings of the Eleventh International Symposium on High Voltage Engineering (Conf. Publ. No. 467), Vol. 3, pp. 193–196.Google Scholar