Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T23:30:05.949Z Has data issue: false hasContentIssue false

Steady waves in a cold plasma

Published online by Cambridge University Press:  13 March 2009

Andrej Il'Ichev
Affiliation:
Steklov Mathematical Institute, Russian Academy of Sciences, Vavilova 42, 117333 Moscow, Russia

Abstract

The possible crest forms of magnetoacoustic travelling waves of small amplitude satisfying the full system of equations describe the wave propagation in a cold quasineutral collisionless plasma are determined. For a certain range of the inclination angle of the magnetic induction vector we find solitary waves. We find also families of periodic waves of two different types, as well as quasiperiodic waves aiid generalized solitary waves with non-decreasing oscillations at infinity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benjamin, T. B. 1972 Proc. R. Soc. Lond. A328, 153.Google Scholar
Elphick, C., Tirapegui, E., Brachet, M. E., Coullet, P. & Iooss, G. 1987 Physica D29. 95.Google Scholar
Fischer, G. 1984 Math. Nachr. 115, 137.CrossRefGoogle Scholar
Il'ichev, A. T. 1992 Math. Notes 52, 662.CrossRefGoogle Scholar
Il'ichev, A. T. & Semenov, A. Yu. 1992 Theor. Comp. Fluid Dyn. 3, 307.CrossRefGoogle Scholar
Iooss, G. & Adelmeyer, M. 1992 Topics in Bifurcation Theory and Applications. World Scientific, Singapore.CrossRefGoogle Scholar
Iooss, G. & Kirchgässner, K. 1991 C.R. Acad. Sci. Paris, Ser. I: 311, 265.Google Scholar
Iooss, G. & Kirchgässner, K. 1992 Proc. B. Soc. Edin. A122, 267.CrossRefGoogle Scholar
Kakutani, T. & Ono, H. 1969 J. Phys. Soc. Jpn 26, 1305.CrossRefGoogle Scholar
Kakutani, T., Ono, H., Tanuiti, T. & Wet, C.-C. 1968 J. Phys. Soc. Jpn 24, 1159.CrossRefGoogle Scholar
Kirchgässner, K. 1982 J. Diff. Eqns 34, 113.CrossRefGoogle Scholar
Lombardi, E. 1993 Homoclinic orbits to small l eriodic orbits for a class of reversible systems. Preprint.Google Scholar
Mielke, A. 1988 Math. Meth. Appl. Sci. 10, 51.CrossRefGoogle Scholar
Pliss, V. A. 1964 Izu. Akad. Nauk SSSR, Ser. Mat. 28. 1297.Google Scholar
Saffman, P. G. 1961 J. Fluid Mech. 11, 552.CrossRefGoogle Scholar