Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T00:57:48.509Z Has data issue: false hasContentIssue false

Stability of solitary waves in a magnetized non-thermal plasma

Published online by Cambridge University Press:  13 March 2009

A. A. Mamun
Affiliation:
School of Mathematical and Computational Sciences, Universitiy of St Andrews, St Andrews, Fife KY16 9SS, U.K.
R. A. Cairns
Affiliation:
School of Mathematical and Computational Sciences, Universitiy of St Andrews, St Andrews, Fife KY16 9SS, U.K.

Abstract

A theoretical investigations is made of the stability of electrostatic waves in a magnetized non-thermal plasma. The Zakharov-Kuznetsov equation (or Korteweg-de Vries equation in three dimensionas) for these solitary waves in this plasma system is derived, and their three-dimensional stability is studied by the small-k (long wavelength plane-wave) perturbation expansion method. The instability criterion and its growth rate depending on the magnetic field and the propagation directions of the solitary wave and its perturbation mode are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cairns, R. A., Mamun, A. A., Bincham, R., Dendy, R. O., Boström, R., Shukla, P. K. & Nairn, C. 1995 a Geophys. Res. Lett. 22, 2709.CrossRefGoogle Scholar
Cairns, R. A., Bincham, R., Dendy, R. O., Nairn, C. M. C., Shukla, P. K. & Mamun, A. A. 1995 b J. de Physique VI, 5, C643.Google Scholar
Cairns, R. A., Mamun, A. A., Bincham, R., Shukla, P. K. 1996 Physica Scripta (in press).Google Scholar
Das, K. P. & Verheest, F. 1989 J. Plasma Phys. 41, 171.CrossRefGoogle Scholar
Dovner, P. O., Eriksson, A. I., Bostrom, R. & Holback, B. 1994 Geophys. Res. Lett. 21, 1827.CrossRefGoogle Scholar
Infeld, E. 1972 J. Plasma Phys. 8, 105.CrossRefGoogle Scholar
Infeld, E. 1985 J. Plasma Phys. 33, 171.CrossRefGoogle Scholar
Infeld, E. & Rowlands, G. 1973 J. Plasma Phys. 10, 293.CrossRefGoogle Scholar
Lonngren, K. E. 1983 Plasma Phys. 25, 943.CrossRefGoogle Scholar
Nakamura, Y. 1982 IEEE Trans. Plasma Sci. 10, 180.CrossRefGoogle Scholar
Nishihara, K. & Tajiri, M. 1981 J. Phys. Soc. Jpn 50, 4047.CrossRefGoogle Scholar
Qian, S., Lotko, W. & Hudson, M. K. 1988 Phys. Fluids 31, 2190.CrossRefGoogle Scholar
Rowlands, G. 1969 J. Plasma Phys. 3, 567.CrossRefGoogle Scholar
Shukla, P. K., Yu, M. Y. 1978 J. Math. Phys. 19, 2506.CrossRefGoogle Scholar
Shukla, P. K., Birk, G. T. & Bingham, R. 1995 a Geophys. Res. Lett. 22, 671.CrossRefGoogle Scholar
Shukla, P. K., Bingham, R., Dendy, R., Pecseli, H. & Stenflo, L. 1995 b J. de Physique IV 5, C619.Google Scholar
Tran, M. Q. 1979 Physica Scripta 20, 317.CrossRefGoogle Scholar
Yadav, L. L. & Sharma, R. S. 1990 Phys. Lett. 150A, 397.CrossRefGoogle Scholar