Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T00:55:55.886Z Has data issue: false hasContentIssue false

Stability of electron inertia Alfvén solitons

Published online by Cambridge University Press:  13 March 2009

P. Frycz
Affiliation:
Canadian Network for Space Research, University of Alberta, Edmonton, Alberta, CanadaT6G 2E9
R. Rankin
Affiliation:
Canadian Network for Space Research, University of Alberta, Edmonton, Alberta, CanadaT6G 2E9
J. C. Samson
Affiliation:
Canadian Network for Space Research, University of Alberta, Edmonton, Alberta, CanadaT6G 2E9

Abstract

Das, Kamp and Sluijter have proposed equations describing three-dimensional electron inertia Alfvén waves for which the characteristic length scales in directions parallel and perpendicular to the ambient magnetic field are of the same order. Planar, obliquely propagating soliton solutions of these equations are known to be linearly unstable. Numerical simulations reveal the nonlinear phase of the evolution of these solitons: a transition from flat to cylindrical solitons is observed, followed by breaking-up into three-dimensional localized cavities. The final stage corresponds to wave breaking; no final stable structure is achieved within the model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borovsky, J. E. 1992 J. Geophys. Res. (submitted).Google Scholar
Bryant, D. A. 1990 Physica Scripta T 30, 215.CrossRefGoogle Scholar
Canuto, C. Hussaini, M. Y. & Quarteroni, M. Y. 1987 Spectral Methods in Fluid Dynamics. Springer.Google Scholar
Das, K. P., Kamp, L. P. J. & Sluijter, F. W. 1989 J.Plasma Phys. 41, 171.CrossRefGoogle Scholar
Frycz, P. & Infeld, E. 1989 Phys. Rev. Lett. 63,384.Google Scholar
Frycz, P., Infeld, E. & Samson, J. C. 1992 Phys. Rev. Lett. 69, 1057.CrossRefGoogle Scholar
Goertz, C. K. 1984 Planet. Space Sci. 32, 1387.Google Scholar
Hasegawa, A. 1976 J. Geophys. Res. 81, 5083.CrossRefGoogle Scholar
Heppner, J. P., Miller, M. L., Pongratz, M. B., Smith, G. M., Smith, L. L., Mende, S. B. & Nath, N. R. 1981 J. Geophys. Res. 86, 3519.Google Scholar
Hui, C.-H. & Seyler, C. E. 1992 J. Geophys. Res. 97, 3953.Google Scholar
Infeld, E. & Rowlands, G. 1990 Nonlinear Waves. Solitons and Chaos. Cambridge University Press.Google Scholar
Lysak, R. L. 1990 Space Sci. Rev. 52, 33.CrossRefGoogle Scholar
Olver, P. J. 1986 Applications of Lie Groups to Differential Equations. Springer.Google Scholar
Sanz-Serna, J. M. & Verwer, J. G. 1986 IMA J. Numer. Anal. 6, 25.CrossRefGoogle Scholar
Seyler, C. E. 1990 J. Geophys. Res. 95, 17199.CrossRefGoogle Scholar
Shukla, P. K., Rahman, H. U. & Sharma, R. P. 1982 J.Plasma Phys. 28, 125.CrossRefGoogle Scholar