Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T02:17:29.031Z Has data issue: false hasContentIssue false

Spontaneous formation of coherent structures by an intense laser pulse interacting with overdense plasma

Published online by Cambridge University Press:  13 November 2020

Devshree Mandal*
Affiliation:
Institute for Plasma Research, HBNI, Bhat, Gandhinagar382428, India Homi Bhabha National Institute, Mumbai400094, India
Ayushi Vashistha
Affiliation:
Institute for Plasma Research, HBNI, Bhat, Gandhinagar382428, India Homi Bhabha National Institute, Mumbai400094, India
Amita Das
Affiliation:
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
*
Email address for correspondence: [email protected]

Abstract

The formation and the dynamics of coherent magnetic field structures in the context of laser plasma interaction has attracted considerable attention. In the literature the formation of these structures has, however, mostly been reported in the wake of a laser pulse propagating in an underdense plasma medium (Bulanov et al., Phys. Rev. Lett., vol. 76, 1996, pp. 3562–3565; Nakamura & Mima Phys. Rev. Lett., vol. 100, 2008, 205006; Bulanov et al., Plasma Phys. Rep., vol. 31, no. 5, 2005, pp. 369–381; Naumova et al., Phys. Plasmas, vol. 8, no. 9, 2001, pp. 4149–4155; Nakamura et al., Phys. Rev. Lett., vol. 105, no. 13, 2010, 135002). The study here focuses on the formation of coherent structures by an intense laser pulse when it interacts with an overdense plasma medium. The laser in this case gets reflected and partially dumps its energy to the lighter electrons species. Particle-in-cell simulation studies have been carried out in two dimensions to show that the energetic electrons (generated at the critical layer and having relativistic energies), together with the background plasma electrons often self-organize to form distinct electron current vortices. These electron vortices have associated magnetic fields with monopolar or dipolar symmetries depending on the rotation profile of the electron current. The formation, stability and dynamics of these structures in the context of overdense plasma is of special importance as they provide a possibility of energy transport into those regions of plasma which are inaccessible to lasers. For such applications, higher energy content (involvement of relativistic electrons in their formation) of these structures is desirable. It is shown that their salient propagation characteristics even at relativistic energies follow the rules of electron magnetohydrodynamics (EMHD) (Isichenko & Marnachev, Sov. Phys. JETP, vol. 66, 1987, p. 702; Biskamp et al., Phys. Rev. Lett., vol. 76, 1996, p. 1264) (Generalized - EMHD Yadav et al., Phys. Plasmas, vol. 15, no. 6, 2008, 062308; Yadav et al., Phys. Plasmas, vol. 16, no. 4, 2009, 040701) for homogeneous (inhomogeneous) plasma medium, respectively.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, J. C., Héron, A. & Laval, G. 2006 Dispersion and transport of energetic particles due to the interaction of intense laser pulses with overdense plasmas. Phys. Rev. Lett. 97, 205006.CrossRefGoogle ScholarPubMed
Askar'Yan, G. A., Bulanov, S. V., Pegoraro, F. & Pukhov, A. M. 1994 Magnetic interaction of self-focusing channels and fluxes of electromagnetic radiation: their coalescence, the accumulation of energy, and the effect of external magnetic fields on them. JETP Lett. 60 (4), 251257.Google Scholar
Biskamp, D., Schwarz, E. & Drake, J. F. 1996 Two-dimensional electron magnetohydrodynamic turbulence. Phys. Rev. Lett. 76, 1264.CrossRefGoogle ScholarPubMed
Bret, A., Firpo, M.-C. & Deutsch, C. 2005 Characterization of the initial filamentation of a relativistic electron beam passing through a plasma. Phys. Rev. Lett. 94, 115002.CrossRefGoogle ScholarPubMed
Bulanov, S. V., Dylov, D. V., Esirkepov, T. Z., Kamenets, F. F. & Sokolov, D. V. 2005 Ion acceleration in a dipole vortex in a laser plasma corona. Plasma Phys. Rep. 31 (5), 369381.CrossRefGoogle Scholar
Bulanov, S. V., Esirkepov, T. Z., Lontano, M & Pegoraro, F. 1997 The stability of single and double vortex films in the framework of the hasegawa-mima equation. Plasma Phys. Rep. 23 (8), 660669.Google Scholar
Bulanov, S. V., Lontano, M., Esirkepov, T. Z., Pegoraro, F. & Pukhov, A. M. 1996 Electron vortices produced by ultraintense laser pulses. Phys. Rev. Lett. 76, 35623565.CrossRefGoogle ScholarPubMed
Califano, F., Pegoraro, F. & Bulanov, S. V. 1997 Spatial structure and time evolution of the weibel instability in collisionless inhomogeneous plasmas. Phys. Rev. E 56, 963969.CrossRefGoogle Scholar
Califano, F., Prandi, R., Pegoraro, F. & Bulanov, S. V. 1998 Nonlinear filamentation instability driven by an inhomogeneous current in a collisionless plasma. Phys. Rev. E 58, 78377845.CrossRefGoogle Scholar
Chatterjee, G., Schoeffler, K. M., Singh, P. K., Adak, A., Lad, A. D., Sengupta, S., Kaw, P., Silva, L. O., Das, A. & Kumar, G. R. 2017 Magnetic turbulence in a table-top laser-plasma relevant to astrophysical scenarios. Nat. Commun. 8, 15970.CrossRefGoogle Scholar
Das, A. 1999 Nonlinear aspects of two-dimensional electron magnetohydrodynamics. Plasma Phys. Control. Fusion 41, A531.CrossRefGoogle Scholar
Davies, J. R. 2008 Laser absorption by overdense plasmas in the relativistic regime. Plasma Phys. Control. Fusion 51 (1), 014006.CrossRefGoogle Scholar
Esirkepov, T., Nishihara, K., Bulanov, S. V. & Pegoraro, F. 2002 Three-dimensional relativistic electromagnetic subcycle solitons. Phys. Rev. Lett. 89, 275002.CrossRefGoogle ScholarPubMed
Fonseca, R. A., Martins, S. F., Silva, L. O., Tonge, J. W., Tsung, F. S. & Mori, W. B. 2008 One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations. Plasma Phys. Control. Fusion 50 (12), 124034.CrossRefGoogle Scholar
Fonseca, R. A., Silva, L. O., Tsung, F. S., Decyk, V. K., Lu, W., Ren, C., Mori, W. B., Deng, S., Lee, S., Katsouleas, T. & Adam, J. C. 2002 OSIRIS: A Three-dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma based Accelerators, Lecture Notes in Computer Science, vol. 2331, pp. 342–351. Springer.CrossRefGoogle Scholar
Hemker, R. G. 2000 Particle-in-cell modeling of plasma-based accelerators in two and three dimensions. Thesis, University of California, Los Angeles. arXiv:1503.00276.Google Scholar
Isichenko, M. B. & Marnachev, A. M. 1987 Nonlinear wave solutions of electron mhd in a uniform plasma. Sov. Phys. JETP 66, 702.Google Scholar
Jia, Q., Mima, K., Cai, H.-B., Taguchi, T., Nagatomo, H. & He, X. T. 2015 Self-generated magnetic dipoles in weakly magnetized beam-plasma system. Phys. Rev. E 91, 023107.CrossRefGoogle ScholarPubMed
Kaw, P. K. 2017 Nonlinear laser–plasma interaction. Rev. Mod. Plasma Phys. 1.CrossRefGoogle Scholar
Kaw, P. & Dawson, J. 1970 Relativistic nonlinear propagation of laser beams in cold overdense plasmas. Phys. Fluids 13 (2), 472481.CrossRefGoogle Scholar
Kaw, P. K., Sen, A. & Katsouleas, T. 1992 Nonlinear 1D laser pulse solitons in a plasma. Phys. Rev. Lett. 68, 31723175.CrossRefGoogle ScholarPubMed
Lezhnin, K. V., Kamenets, F. F., Esirkepov, T. Z. & Bulanov, S. V. 2018 On annihilation of the relativistic electron vortex pair in collisionless plasmas. J. Plasma Phys. 84 (6), 905840610.CrossRefGoogle Scholar
Lezhnin, K. V., Kamenets, F. F., Esirkepov, T. Z., Bulanov, S. V., Gu, Y. J., Weber, S. & Korn, G. 2016 Explosion of relativistic electron vortices in laser plasmas. Phys. Plasmas 23 (9), 093116.CrossRefGoogle Scholar
Malka, G. & Miquel, J. L. 1996 Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Phys. Rev. Lett. 77, 7578.CrossRefGoogle ScholarPubMed
Modena, A. 1995 Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606.CrossRefGoogle Scholar
Nakamura, T., Bulanov, S. V., Esirkepov, T. Z. & Kando, M. 2010 High-energy ions from near-critical density plasmas via magnetic vortex acceleration. Phys. Rev. Lett. 105 (13), 135002.CrossRefGoogle ScholarPubMed
Nakamura, T. & Mima, K. 2008 Magnetic-dipole vortex generation by propagation of ultraintense and ultrashort laser pulses in moderate-density plasmas. Phys. Rev. Lett. 100, 205006.CrossRefGoogle ScholarPubMed
Naumova, N. M., Bulanov, S. V., Esirkepov, T. Z., Farina, D., Nishihara, K., Pegoraro, F., Ruhl, H. & Sakharov, A. S. 2001 a Formation of electromagnetic postsolitons in plasmas. Phys. Rev. Lett. 87, 185004.CrossRefGoogle Scholar
Naumova, N. M., Koga, J., Nakajima, K., Tajima, T., Esirkepov, T. Z., Bulanov, S. V. & Pegoraro, F. 2001 b Polarization, hosing and long time evolution of relativistic laser pulses. Phys. Plasmas 8 (9), 41494155.CrossRefGoogle Scholar
Park, J., Bulanov, S. V., Bin, J., Ji, Q., Steinke, S., Vay, J.-L., Geddes, C. G. R., Schroeder, C. B., Leemans, W. P., Schenkel, T., et al. 2019 Ion acceleration in laser generated megatesla magnetic vortex. Phys. Plasmas 26 (10), 103108.CrossRefGoogle Scholar
Parker, E. N. 1957 Sweet's mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62 (4), 509520.CrossRefGoogle Scholar
Poornakala, S., Das, A., Kaw, P. K., Sen, A., Sheng, Z. M., Sentoku, Y., Mima, K. & Nishikawa, K. 2002 a Weakly relativistic one-dimensional laser pulse envelope solitons in a warm plasma. Phys. Plasmas 9 (9), 38023810.CrossRefGoogle Scholar
Poornakala, S., Das, A., Sen, A. & Kaw, P. K. 2002 b Laser envelope solitons in cold overdense plasmas. Phys. Plasmas 9 (5), 18201823.CrossRefGoogle Scholar
Romagnani, L., Bigongiari, A., Kar, S., Bulanov, S. V., Cecchetti, C. A., Esirkepov, T. Z., Galimberti, M., Jung, R., Liseykina, T. V., Macchi, A., et al. 2010 Observation of magnetized soliton remnants in the wake of intense laser pulse propagation through plasmas. Phys. Rev. Lett. 105, 175002.CrossRefGoogle ScholarPubMed
Shukla, P. K. & Eliasson, B. 2005 Localization of intense electromagnetic waves in a relativistically hot plasma. Phys. Rev. Lett. 94, 065002.CrossRefGoogle Scholar
Sundar, S., Das, A., Saxena, V., Kaw, P. & Sen, A. 2011 Relativistic electromagnetic flat top solitons and their stability. Phys. Plasmas 18 (11), 112112.CrossRefGoogle Scholar
Tabak, M., Clark, D. S., Hatchett, S. P., Key, M. H., Lasinski, B. F., Snavely, R. A., Wilks, S. C., Town, R. P. J., Stephens, R., Campbell, E. M., et al. 2005 Review of progress in fast ignition. Phys. Plasmas 12 (5), 057305.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, E. M., Perry, M. D. & Mason, R. J. 1994 Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1 (5), 16261634.CrossRefGoogle Scholar
Verma, D., Bera, R. K., Kumar, A., Patel, B. & Das, A. 2017 Observation of 1-D time dependent non-propagating laser plasma structures using fluid and pic codes. Phys. Plasmas 24 (12), 123111.CrossRefGoogle Scholar
Verma, D., Das, A., Kaw, P. & Tiwari, S. K. 2015 The study of electromagnetic cusp solitons. Phys. Plasmas 22 (1), 013101.CrossRefGoogle Scholar
Weibel, E. S. 1959 Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 8384.CrossRefGoogle Scholar
Wharton, K. B., Hatchett, S. P., Wilks, S. C., Key, M. H., Moody, J. D., Yanovsky, V., Offenberger, A. A., Hammel, B. A., Perry, M. D. & Joshi, C. 1998 Experimental measurements of hot electrons generated by ultraintense laser-plasma interactions on solid-density targets. Phys. Rev. Lett. 81, 822825.CrossRefGoogle Scholar
Yabuuchi, T., Das, A., Kumar, G. R., Habara, H., Kaw, P. K., Kodama, R., Mima, K., Norreys, P. A., Sengupta, S. & Tanaka, K. A. 2009 Evidence of anomalous resistivity for hot electron propagation through a dense fusion core in fast ignition experiments. New J. Phys. 11 (9), 093031.CrossRefGoogle Scholar
Yadav, S. K. 2011 Electron magnetohydrodynamic (Emhd) studies on electron transport in an inhomogeneous plasma medium. Thesis.Google Scholar
Yadav, S. K., Bera, R. K., Verma, D., Kaw, P. & Das, A. 2020 Propagation of slow electromagnetic disturbances in plasma. Contrib. Plasma Phys. doi:10.1002/ctpp.202000101.CrossRefGoogle Scholar
Yadav, S. K., Das, A. & Kaw, P. 2008 Propagation of electron magnetohydrodynamic structures in a two-dimensional inhomogeneous plasma. Phys. Plasmas 15 (6), 062308.CrossRefGoogle Scholar
Yadav, S. K., Das, A., Kaw, P. & Sengupta, S. 2009 Anomalous energy dissipation of electron current pulses propagating through an inhomogeneous collisionless plasma medium. Phys. Plasmas 16 (4), 040701.CrossRefGoogle Scholar
Zweibel, E. G. & Yamada, M. 2016 Perspectives on magnetic reconnection. Proc. R. Soc. A Math. Phys. Engng Sci. 472 (2196), 20160479.Google ScholarPubMed