Published online by Cambridge University Press: 07 May 2010
We describe the spatio-temporal evolution of one-dimensional Alfven resonance disturbance in the presence of various factors of resonance detuning: dispersion and absorption of Alfven disturbance, nonstationarity of large-scale wave generating resonant disturbance. Using analytical solutions to the resonance equation, we determine conditions for forming qualitatively different spatial and temporal structures of resonant Alfven disturbances. We also present analytical descriptions of quasi-stationary and non-stationary spatial structures formed in the resonant layer, and their evolution over time for cases of drivers of different types corresponding to large-scale waves localized in the direction of inhomogeneity and to nonlocalized large-scale waves.