Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T06:06:58.191Z Has data issue: false hasContentIssue false

Space-charge waves in a relativistic electron beam with ion-channel guiding

Published online by Cambridge University Press:  05 November 2010

SAEED MIRZANEJHAD
Affiliation:
Department of Physics, Faculty of Basic Science, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran ([email protected])
BEHROUZ MARAGHECHI
Affiliation:
Department of Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
FARSHAD SOHBATZADEH
Affiliation:
Department of Physics, Faculty of Basic Science, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran ([email protected])
IMAN KAMEL-JAHROMI
Affiliation:
Department of Physics, Faculty of Basic Science, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran ([email protected])

Abstract

Space-charge waves in a relativistic electron beam that completely fills a cylindrical metallic waveguide and is guided by an ion channel are analyzed numerically. Equilibrium consists of a uniform and rigid rotation without betatron oscillations. Using cold fluid equations a differential equation and boundary conditions are derived that constitute an eigenvalue problem. This eigenvalue problem is solved, numerically, with the finite difference scheme using shooting method. Dispersion characteristics and electrostatic potential structures of azimuthally symmetric and nonsymmetric space-charge waves are studied. Perfect agreement with analytical results at asymptotic limit of zero axial velocity is found. It was found that relativistic effects modify the dispersion characteristics of the space-charge waves considerably and can concentrate the electric field energy of the wave into a thin and small shell around the axis.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Lacambe, C., Mangeney, A., Harvey, C. C. and Scudder, J. D. 1985 J. Geophys. Res. 90, 73.CrossRefGoogle Scholar
[2]Lin, R. P., Levedahl, W. K., Letko, W., Gurnett, D. A. and Scarf, F. L. 1986 Astrophys. J. 308, 954.CrossRefGoogle Scholar
[3]Celata, C. M. 2000 In: Proc. XXth Int. Linac Conf., Monterey, CA (ed. Chao, A. W.) (SLAC Report No. SLAC-R-561), p. 668.Google Scholar
[4]Freund, H. P. and Antonsen, T. M. Jr., 1992 Principles of Free-electron Lasers. London: Chapman and Hall.CrossRefGoogle Scholar
[5]Marshall, T. C. 1985 Free-Electron Laser. New York: Macmillan Publishing Co..Google Scholar
[6]Davidson, R. C. 1990 An Introduction to the Physics of Nonneutral Plasmas. Redwood City, CA: Addison-Wesley, p. 289.Google Scholar
[7]Spencer, R. L. and Rasband, S. N. 1997 Phys. Plasmas 4, 53.CrossRefGoogle Scholar
[8]Davidson, R. C. and Felice, G. M. 1998 Phys. Plasmas 5, 3497.CrossRefGoogle Scholar
[9]Goswani, P., Bhattacharyya, S. N., Sen, A. and Maheshwari, K. P.Phys. Plasmas 6, 3442.CrossRefGoogle Scholar
[10]Bhattacharyya, S. N.Phys. Plasmas 7, 4805.CrossRefGoogle Scholar
[11]Kervalishvili, G. N., Javakhishvili, J. I. and Kervalishvili, N. A. 2002 Phys. Lett. A 296, 289.CrossRefGoogle Scholar
[12]Davidson, R. C. 1990 An Introduction to the Physics of Nonneutral Plasmas. Redwood City, CA: Addison-Wesley, p. 240.Google Scholar
[13]Dubin, D. H. E. 1991 Phys. Rev. Lett. 66, 2076.CrossRefGoogle Scholar
[14]Gould, R. W. 1995 Phys. Plasmas 2, 1404.CrossRefGoogle Scholar
[15]Book, D. L. 1995 Phys. Plasmas 2, 1398.CrossRefGoogle Scholar
[16]Bhattacharyya, S. N. and Bhattacharjee, A.Phys. Plasmas 4, 895.CrossRefGoogle Scholar
[17]Goswani, P., Bhattacharyya, S. N. and Sen, A. 2000 J. Comput. Phys. 159, 312.CrossRefGoogle Scholar
[18]Spencer, R. L. 1995 Numerical modeling of nonneutral plasmas. In: Nonneutral plasma Physics II. New York: American Institute of Physics, p. 204.Google Scholar
[19]Gammel, G., Nation, J. A. and Read, M. E. 1979 J. Appl. Phys. 50, 5603.CrossRefGoogle Scholar
[20]Zou, Y., Wang, J. G., Suk, H. and Reiser, M. 2000 Phys. Rev. Lett. 84, 5138.CrossRefGoogle Scholar
[21]Wang, J. G., Wang, D. X. and Reiser, M. 1993 Phys. Rev. Lett. 71, 1836.CrossRefGoogle Scholar
[22]Wang, J. G. and Reiser, M. 1998 Phys. Plasmas 5, 2064.CrossRefGoogle Scholar
[23]Tian, K., Zou, Y., Cui, Y., Haber, I., Kishek, R. A., Reiser, M. and O'Shea, P. G. 2006 Phys. Rev. ST Accel. Beams 9, 014201.CrossRefGoogle Scholar
[24]Gelani, G., Saldin, E., Schneidmiller, E. and Yurkov, M. 2005 Nucl. Instrum. Methods Phys. Res. A 554, 20.CrossRefGoogle Scholar
[25]Pinhasi, Y. and Gover, A. 1993 Phys. Rev. E 48, 3925.CrossRefGoogle Scholar
[26]Wang, J. G., Wang, D. X., Suk, H. and Reiser, M. 1995 Phys. Rev. Lett. 74, 3153.CrossRefGoogle Scholar
[27]Chain, A. C. L. 1989 Phys. Rev. A 39, 2561.CrossRefGoogle Scholar
[28]Ueda, T. and Shiazawa, T. 1996 Appl. Phys. Lett. 69, 2935.CrossRefGoogle Scholar
[29]Cairns, I. H. 1989 Phys. Fluids B 1, 204.CrossRefGoogle Scholar
[30]Briggs, R. J. 1976 Phys. Fluids 19, 1257.CrossRefGoogle Scholar
[31]Geloni, G., Saldin, E. L., Schneidmiller, E. A. and Yurkov, M. V. 2004 In: Proc. 26th Int. Free Electron Laser Conference, Trieste (ed. Bakker, R. et al. ). Italy: Comitato canferenze Elettra, p. 22.Google Scholar
[32]Saldin, E. L., Schneidmiller, E. A. and Yurkov, M. V. 2002 Nucl. Instrum. Methods Phys. Res. A 486, 516.CrossRefGoogle Scholar
[33]Reiche, S. and Rosenzweig, J. B. 2003 Phys. Rev. ST Accel. Beams 6, 040702.CrossRefGoogle Scholar
[34]Huang, Z., Borland, M., Emma, P., Wu, J., Limborg, C., Stupakov, G. and Welch, J. 2004 Phys. Rev. ST Accel. Beams 7, 074401.CrossRefGoogle Scholar
[35]Martin, W. E., Caporaso, G. J., Fawley, W. M., Prosnitz, D. and Cole, A. G. 1985 Phys. Rev. Lett. 54, 685.CrossRefGoogle Scholar
[36]Caporaso, G. J., Rainer, F., Martin, W. E., Prono, D. S. and Cole, A. G. 1986 Phys. Rev. Lett. 57, 1591.CrossRefGoogle Scholar
[37]Takayama, K. and Hiramatsu, S. 1998 Phys. Rev. A 37, 173.CrossRefGoogle Scholar
[38]Ozaki, T., Ebihara, K., Hiramatsu, S., Kimura, Y., Kishuro, J., Monaka, T., Takayama, K. and Whittum, D. H. 1992 Nucl. Instrum. Methods Phys. Res. A 318, 101.CrossRefGoogle Scholar
[39]Yu, L. H., Sessler, A. M. and Whittum, D. H. 1992 Nucl. Instrum. Methods Phys. Res. A 318, 721.Google Scholar
[40]Rouhani, M. H. and Maraghechi, B. 2006 Phys. Plasmas 13, 083101.CrossRefGoogle Scholar
[41]Tang, C. J., Liu, P. K. and Liu, S. G. 1996 J. Phys. D: Appl. Phys. 29, 90.CrossRefGoogle Scholar
[42]Stenflo, L. 1976 J. Plasma Phys. 21, 333.CrossRefGoogle Scholar