Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T00:41:11.127Z Has data issue: false hasContentIssue false

Some Properties of large-amplitude electrostatic waves (Allis modes)

Published online by Cambridge University Press:  13 March 2009

W. W. Neel
Affiliation:
Physics Department, University of South Florida
R. W. Flynn
Affiliation:
Physics Department, University of South Florida

Abstract

Allis modes are large-ampliturde, undamped electrostatic plasma waves, in which the trapped electron distribution is the analytic continuation of the untrapped distribution. Allis modes can be pulse-like, as well as periodic. As the amplitude of the periodic solutions increases, the frequency decrsases and the wavelength increases, leading finally to solitary pulse solutions as a limiting case, reached when an appreciable number of electrons are trapped by the wave. These pluse-like solutions imply a maximum amplitude to Allis modes, and a maximum d.c. current they can drive. A simple approximate expression gives the non-linear properties of Allis modes in terms of the linear properties and the maximum amplitude.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Government Printing Office.Google Scholar
Akhiezer, A. I. & Lyubarskii, G. Ya. 1951 Dokl. Akad. Nauk, SSSR, 80, 193.Google Scholar
Allis, W. P. 1969 Nonlinear, collisionless, plasma waves. In Honor of Philip M. Morse (ed. Feshbach, H. and Ingard, K.). MIT.Google Scholar
Apel, J. R. 1969 Phys. Fluids, 12, 291.CrossRefGoogle Scholar
Armstrong, T. P. 1967 Phys Fluids, 10, 1269.CrossRefGoogle Scholar
Armstrong, T. & Montgomery, D. 1967 J. Plasma Phys. 1, 425.CrossRefGoogle Scholar
Berk, H. L. & Roberts, K. V. 1967 Phys. Fluids, 10, 1595.CrossRefGoogle Scholar
Bernstein, I. B., Greene, J. M. & Kruskal, M. D. 1957 Phys. Rev. 108, 546.CrossRefGoogle Scholar
Bohm, D. & Gross, E. P. 1949 Phys. Rev. 75, 1851.CrossRefGoogle Scholar
Drummond, W. E., Malmberg, J. H., O'Neil, T. M. & Thompson, J. R. 1970 Phys. Fluids, 13, 2422.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Manheimer, W. M. & Flynn, R. W. 1971 Phys. Fluids, 14, 2393.CrossRefGoogle Scholar
Montgomery, D. & Joyce, G. 1969 J. Plasma Phys. 4, 441.Google Scholar
Morse, R. L. & Nielson, C. W. 1969 Phys. Rev. Lett. 23, 1087.CrossRefGoogle Scholar
Nishikawa, K. & Wu, C. W. 1969 Phys. Rev. Lett. 23, 1020.CrossRefGoogle Scholar
O'Neil, T. 1965 Phys. Fluids, 8, 2255.CrossRefGoogle Scholar
Ozawa, Y., Kaji, I. & Kito, M. 1964 Plasma Physics, 6, 227.Google Scholar
Prasad, B., Sen, H. K., Bakshi, P. & Kalman, G. 1971 Radio Sci. 6, 215.CrossRefGoogle Scholar
Sen, H. K. 1955 Phys. Rev. 97, 849.CrossRefGoogle Scholar
Sen, H. K. & Bakshi, P. M. 1969 a Proc. 9th Int. Conf. on Phenomena in Ionized Gases, Bucharest, p. 534.Google Scholar
Sen, H. K. & Bakshi, P. M. 1969 b International IEEE/G-AP Symposium, Austin, Texas, p. 231.Google Scholar
Sen, H. K., Dubs, C. W. & Prasad, B. 1971 Radio Sci. 6, 489.CrossRefGoogle Scholar
Van, Kampen N. G. 1955 Physica, 21, 949.Google Scholar
Zakharov, V. E. & Karpman, V. I. 1963 Soviet Phys. JETP, 16, 351.Google Scholar