Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-07T10:43:27.487Z Has data issue: false hasContentIssue false

Solitary waves in a dusty adiabatic electronegative plasma

Published online by Cambridge University Press:  15 January 2010

A. A. MAMUN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh ([email protected])
K. S. ASHRAFI
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh ([email protected])
M. G. M. ANOWAR
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh ([email protected]) Department of Physics, National University, Gazipur 1704, Bangladesh

Abstract

The dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annaratone, B. M. and Allen, J. E. 2005 J. Phys. D 38, 26.CrossRefGoogle Scholar
Annaratone, B. M. et al. 2004 Phys. Rev. Lett. 93, 185001.CrossRefGoogle Scholar
Barkan, A. et al. 1996 Planet. Space Sci. 44, 239.CrossRefGoogle Scholar
Berezhnoj, S. V. et al. 2000 Appl. Phys. Lett. 77, 800.CrossRefGoogle Scholar
Bharuthram, R. and Shukla, P. K. 1992 Planet. Space Sci. 40, 973.CrossRefGoogle Scholar
Chabert, P. et al. 2007 Phys. Plasmas 14, 093502.CrossRefGoogle Scholar
Chung, T. H. 2009 Phys. Plasmas 16, 063503.CrossRefGoogle Scholar
Coates, A. J. et al. 2007 Geophys. Res. Lett. 34, L22103.Google Scholar
D'Angelo, N. 2004 J. Phys. D 37, 860.CrossRefGoogle Scholar
Fortov, V. E. et al. 2005 Phys. Rep. 421, 1.CrossRefGoogle Scholar
Franklin, R. N. 2002 Plasma Sources Sci. Technol. 11, A31.CrossRefGoogle Scholar
Geortz, C. K. 1989 Rev. Geophys. 27, 271.CrossRefGoogle Scholar
Ghim, Y. and Hershkowitz, N. 2009 Appl. Phys. Lett. 94, 151503.Google Scholar
Ishihara, O. 2007 J. Phys. D 40, R121.CrossRefGoogle Scholar
Kim, S. H. and Merlino, R. L. 2006 Phys. Plasmas 13, 052118.CrossRefGoogle Scholar
Kimura, T. et al. 1998 J. Phys. D: Appl. Phys. 31, 2295.CrossRefGoogle Scholar
Mamun, A. A. 2008 Phys. Lett. A 372, 1490.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2002a IEEE Trans. Plasma Sci. 30, 720.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2002b Phys. Plasmas 9, 1468.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2003 Phys. Plasmas 65, 1518.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2005 Plasma Phys. Contr. Fusion 47, A1.CrossRefGoogle Scholar
Mamun, A. A. et al. 2009a Phys. Lett. A 373, 2355.CrossRefGoogle Scholar
Mamun, A. A. et al. 2009b Phys. Rev. E 80, 046406.CrossRefGoogle Scholar
Mamun, A. A. et al. 2009c Phys. Plasmas 16, 114503.CrossRefGoogle Scholar
Meige, A. et al. 2007 Phys. Plasmas 14, 053508.CrossRefGoogle Scholar
Mendis, D. A. and Rosenberg, M. 1994 Annu. Rev. Astron. Astrophys. 32, 419.CrossRefGoogle Scholar
Merlino, R. L. and Goree, J. 2004 Phys. Today 57, 32.CrossRefGoogle Scholar
Merlino, R. L. and Kim, S. H. 2006 Appl. Phys. Lett. 89, 091501.CrossRefGoogle Scholar
Morfill, G. E. and Ivlev, A. V. 2009 Rev. Mod. Phys. 81, 1353.CrossRefGoogle Scholar
Nakamura, Y. and Sharma, A. 2001 Phys. Plasmas 8, 3921.CrossRefGoogle Scholar
Plihon, N. et al. 2007 Phys. Plasmas 14, 013506.CrossRefGoogle Scholar
Rosenberg, M. and Merlino, R. L. 2007 Planet. Space Sci. 55, 1464.CrossRefGoogle Scholar
Rosenberg, M. and Merlino, R. L. 2009 J. Plasma Phys. 75, 495 (2009).CrossRefGoogle Scholar
Rosenberg, M. and Shukla, P. K. 2002 J. Geophys. Res. 107, SIA 21–1.CrossRefGoogle Scholar
Sayed, F. et al. 2008 Phys. Plasmas 15, 063701.CrossRefGoogle Scholar
Shukla, P. K. 2001 Phys. Plasmas 8, 1791.CrossRefGoogle Scholar
Shukla, P. K. 2007 Plasma Phys. Contr. Fusion 49, A 221.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2004 Phys. Plasmas 11, 584.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 23.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: IoP Publishing Ltd, p. 195.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2003 New J. Phys. 5, 17.1.Google Scholar
Shukla, P. K. and Rosenberg, M. 1999 Phys. Plasmas 6, 1038.CrossRefGoogle Scholar
Shukla, P. K. and Silin, V. P. 1992 Phys. Scri. 45, 508.CrossRefGoogle Scholar
Vender, D. et al. 1995 Phys. Rev. E 51, 2436.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar