Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T02:35:52.195Z Has data issue: false hasContentIssue false

Small-amplitude Langmuir pulse excited by a planar grid electrode in a flowing plasma

Published online by Cambridge University Press:  13 July 2015

John J. Podesta*
Affiliation:
Center for Space Plasma Physics, Space Science Institute, Boulder, CO 80301, USA
*
Email address for correspondence: [email protected]

Abstract

The generation and propagation of a small-amplitude Langmuir pulse excited by a planar grid electrode in a spatially uniform collisionless plasma with a constant flow velocity is studied by solving the linearized Vlasov–Poisson equations. The electrode is transparent to the flow of particles, like a screen or a wire mesh. The particles are assumed to have a Kappa velocity distribution, a reasonable approximation for electron distribution functions in the solar wind. Exact, closed-form solutions are obtained for ${\it\kappa}=1$ , the Lorentzian distribution, and for ${\it\kappa}=2$ . The explicit form of the solution in the case ${\it\kappa}=2$ has not, to our knowledge, appeared in the literature before. The properties of the solutions are investigated and a practical technique for measuring the bulk flow velocity in plasma experiments is proposed that may be useful for high-accuracy, high-time-resolution measurements of the bulk flow velocity in the solar wind.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A.(Eds) 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th printing, US Department of Commerce, National Bureau of Standards.Google Scholar
Borovsky, J. E. 1988 The dynamic sheath – objects coupling to plasmas on electron–plasma-frequency time scales. Phys. Fluids 31, 10741100.CrossRefGoogle Scholar
Buckley, R. 1968 Radio frequency properties of a plane grid capacitor immersed in a hot collision-free plasma. J. Plasma Phys. 2, 339351.CrossRefGoogle Scholar
Calder, A. C., Hulbert, G. W. & Laframboise, J. G. 1993 Sheath dynamics of electrodes stepped to large negative potentials. Phys. Fluids B 5, 674690.CrossRefGoogle Scholar
Couturier, P., Hoang, S., Meyer-Vernet, N. & Steinberg, J. L. 1981 Quasi-thermal noise in a stable plasma at rest – theory and observations from ISEE 3. J. Geophys. Res. 86, 1112711138.CrossRefGoogle Scholar
Crawford, F. W. & Harp, R. S. 1965 The resonance probe – a tool for ionospheric and space research. J. Geophys. Res. 70, 587596.CrossRefGoogle Scholar
Drummond, W. E. 1963 Theory of plasma wave probes in a collisionless plasma. Rev. Sci. Instrum. 34, 779781.CrossRefGoogle Scholar
Feix, M. 1964 Excitation level of plasma oscillations. Phys. Lett. 9, 123125.CrossRefGoogle Scholar
Fried, B. D., Kaufman, A. N. & Sachs, D. L. 1966 Low-frequency spatial response of a collisional electron plasma. Phys. Fluids 9, 292298.CrossRefGoogle Scholar
Gould, R. W. 1964 Excitation of ion-acoustic waves. Phys. Rev. 136, 991997.CrossRefGoogle Scholar
Maksimovic, M., Pierrard, V. & Riley, P. 1997 Ulysses electron distributions fitted with Kappa functions. Geophys. Res. Lett. 24, 11511154.CrossRefGoogle Scholar
Maksimovic, M., Zouganelis, I., Chaufray, J.-Y., Issautier, K., Scime, E. E., Littleton, J. E., Marsch, E., McComas, D. J., Salem, C., Lin, R. P. & Elliott, H. 2005 Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res. 110, A09104, doi:10.1029/2005JA011119.Google Scholar
Meyer-Vernet, N. 1979 On natural noises detected by antennas in plasmas. J. Geophys. Res. 84, 53735377.CrossRefGoogle Scholar
Meyer-Vernet, N., Hoang, S., Issautier, K., Maksimovic, M., Manning, R., Moncuquet, M. & Stone, R. G. 1998 Measuring plasma parameters with thermal noise spectroscopy. In Measurement Techniques in Space Plasmas – Fields (ed. Pfaff, R. F., Borovsky, J. E. & Young, D. T.), Geophysical Monograph Series, vol. 103, pp. 205210. American Geophysical Union.CrossRefGoogle Scholar
Meyer-Vernet, N. & Perche, C. 1989 Tool kit for antennae and thermal noise near the plasma frequency. J. Geophys. Res. 94, 24052415.CrossRefGoogle Scholar
Pierrard, V. & Lazar, M. 2010 Kappa distributions: theory and applications in space plasmas. Solar Phys. 267, 153174.CrossRefGoogle Scholar
Podesta, J. J. 2005 Spatial Landau damping in plasmas with three-dimensional ${\it\kappa}$ distributions. Phys. Plasmas 12, 052101.CrossRefGoogle Scholar
Podesta, J. J. 2008 Landau damping in relativistic plasmas with power-law distributions and applications to solar wind electrons. Phys. Plasmas 15 (12), 122902.CrossRefGoogle Scholar
Simonen, T. C. 1970 Grid assemblies as electrostatic plasma wave antennas. In Plasma Waves in Space and in the Laboratory (ed. Thomas, J. O. & Landmark, B. J.), vol. 2, pp. 285296. American Elsevier.Google Scholar
Stix, T. H. 1992 Waves in Plasmas. American Institute of Physics.Google Scholar
Thorne, R. M. & Summers, D. 1991 Landau damping in space plasmas. Phys. Fluids B 3, 21172123.CrossRefGoogle Scholar
Vasyliunas, V. M. 1968 A survey of low-energy electrons in the evening sector of the magnetosphere with Ogo 1 and Ogo 3. J. Geophys. Res. 73, 28392884.CrossRefGoogle Scholar
Wang, L., Lin, R. P., Salem, C., Pulupa, M., Larson, D. E., Yoon, P. H. & Luhmann, J. G. 2012 Quiet-time interplanetary 2–20 keV superhalo electrons at solar minimum. Astrophys. J. Lett. 753, L23.CrossRefGoogle Scholar
Wang, L., Lin, R. P., Salem, C., Pulupa, M., Larson, D. E., Yoon, P. H. & Luhmann, J. G. 2013 Quiet-time solar wind superhalo electrons at solar minimum. In Solar Wind 13: Proceedings of the Thirteenth International Solar Wind Conference. American Institute of Physics Conference Proceedings (ed. Zank, G. P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., Giacalone, J., Gonzalez, W., Li, G., Marsch, E., Moebius, E., Pogorelov, N., Spann, J. & Verkhoglyadova, O.), vol. 1539, pp. 299302.Google Scholar