Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T15:31:04.116Z Has data issue: false hasContentIssue false

Slice collective dynamics, projected emittance deterioration and free electron laser performances detrimental effects

Published online by Cambridge University Press:  16 November 2020

G. Dattoli
Affiliation:
ENEA Fusion and Nuclear Safety Department, R.C. Frascati, 00044Frascati, Rome, Italy
S. Di Mitri
Affiliation:
Elettra Sincrotrone Trieste, 34149Basovizza, Trieste, Italy
F. Nguyen
Affiliation:
ENEA Fusion and Nuclear Safety Department, R.C. Frascati, 00044Frascati, Rome, Italy
A. Petralia*
Affiliation:
ENEA Fusion and Nuclear Safety Department, R.C. Frascati, 00044Frascati, Rome, Italy
*
Email address for correspondence: [email protected]

Abstract

Self-amplified spontaneous emission (SASE) free electron laser (FEL) devices have disclosed an unexpected interplay between the laser intensity growth and regions of the electron bunch of the order of the coherence length. They are usually identified with the bunch slice and contribute to the laser dynamics with their own characteristics. The dynamical effects inducing geometrical and phase space misalignment of bunch slice in X-ray operating FELs can be traced back to a plethora of phenomena, both in the Linac accelerating section or inside the beam transport optic magnet. They are responsible for spoiling of the beam projected qualities and, if not corrected properly, induce an increase of the saturation length and a decreasing of the output power. We discuss the inclusion of these effects in models employing scaling formulae.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biedron, S., Chae, Y., Dejus, R. J., Faatz, B., Freund, H., Milton, S., Nuhn, H.-D. & Reiche, S. 2000 Multi-dimensional free-electron laser simulation codes: a comparison study. Nucl. Instrum. Meth. Phys. Res. A 445 (1–3), 110115.CrossRefGoogle Scholar
Bonifacio, R., Pellegrini, C. & Narducci, L. 1984 Collective instabilities and high-gain regime free electron laser. Opt. Commun. 50 (6), 373378.CrossRefGoogle Scholar
Colson, W., Pellegrini, C. & Renieri, A. 1990 Classical free electron laser theory. Laser Handbook 6 (115), 75.Google Scholar
Dattoli, G., Fares, H. & Licciardi, S. 2020 Space charge and quantum corrections in free electron laser evolution. Nucl. Instrum. Meth. Phys. Res. A 976, 164176.CrossRefGoogle Scholar
Dattoli, G., Giannessi, L., Ottaviani, P. & Ronsivalle, C. 2004 Semi-analytical model of self-amplified spontaneous-emission free-electron lasers, including diffraction and pulse-propagation effects. J. Appl. Phys. 95 (6), 32063210.CrossRefGoogle Scholar
Dattoli, G., Letardi, T., Madey, J. & Renieri, A. 1984 Limits on the single-pass higher harmonics FEL operation. IEEE J. Quantum Electron. 20 (9), 10031005.CrossRefGoogle Scholar
Dattoli, G., Ottaviani, P. & Pagnutti, S. 2007 Booklet for FEL Design: A Collection of Practical Formulae. ENEA–Edizioni Scientifiche.Google Scholar
Dattoli, G. & Renieri, A. 1981 The free-electron laser single-particle multimode classical theory. Il Nuovo Cimento B (1971–1996) 61 (2), 153180.CrossRefGoogle Scholar
Dattoli, G., Renieri, A. & Torre, A. 1993 Lectures on the Free Electron Laser Theory and Related Topics. World Scientific.CrossRefGoogle Scholar
Dattoli, G., Renieri, A., Torre, A. & Caloi, R. 1989 Inhomogeneous broadening effects in high-gain free electron laser operation: a simple parametrization. Il Nuovo Cimento D 11 (3), 393404.CrossRefGoogle Scholar
Dattoli, G., Sabia, E., Del Franco, M. & Petralia, A. 2012 a Beam matching strategies in undulators for SASE FEL operating devices. Nucl. Instrum. Meth. Phys. Res. A 671, 8293.CrossRefGoogle Scholar
Dattoli, G., Sabia, E., Ronsivalle, C., Del Franco, M. & Petralia, A. 2012 b Slice emittance, projected emittance and properties of the SASE FEL radiation. Nucl. Instrum. Meth. Phys. Res. A 671, 5161.CrossRefGoogle Scholar
Di Mitri, S. & Cornacchia, M. 2014 Electron beam brightness in linac drivers for free-electron-lasers. Phys. Rep. 539 (1), 148.CrossRefGoogle Scholar
Di Mitri, S. & Spampinati, S. 2014 Estimate of free electron laser gain length in the presence of electron beam collective effects. Phys. Rev. Spec. Top. Accel. Beams 17 (11), 110702.CrossRefGoogle Scholar
Giannessi, L. 2003 Simulation codes for high brightness electron beam free-electron laser experiments. Phys. Rev. Spec. Top. Accel. Beams 6 (11), 114802.CrossRefGoogle Scholar
Guetg, M. W., Beutner, B., Prat, E. & Reiche, S. 2015 Optimization of free electron laser performance by dispersion-based beam-tilt correction. Phys. Rev. Spec. Top. Accel. Beams 18 (3), 030701.CrossRefGoogle Scholar
Holzer, B. J. 2013 Beam optics and lattice design for particle accelerators. arXiv:1303.6514.CrossRefGoogle Scholar
Lazzarino, L., Di Palma, E., Anania, M., Artioli, M., Bacci, A., Bellaveglia, M., Chiadroni, E., Cianchi, A., Ciocci, F., Dattoli, G., et al. 2014 Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport. Phys. Rev. Spec. Top. Accel. Beams 17 (11), 110706.CrossRefGoogle Scholar
Ottaviani, P., Pagnutti, S., Dattoli, G., Sabia, E., Petrillo, V., van der Slot, P. J., Biedron, S. & Milton, S. 2016 Deep saturated free electron laser oscillators and frozen spikes. Nucl. Instrum. Meth. Phys. Res. A 834, 108117.CrossRefGoogle Scholar
Quattromini, M., Artioli, M., Di Palma, E., Petralia, A. & Giannessi, L. 2012 Focusing properties of linear undulators. Phys. Rev. Spec. Top. Accel. Beams 15 (8), 080704.CrossRefGoogle Scholar
Reiche, S. 1999 Genesis 1.3: a fully 3D time-dependent FEL simulation code. Nucl. Instrum. Meth. Phys. Res. A 429 (1–3), 243248.CrossRefGoogle Scholar
Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. 2004 Design formulas for VUV and X-ray FELs. In Proceedings of the 26th International Free Electron Laser Conference, Trieste, Italy, vol. 3.Google Scholar
Tanaka, T., Kitamura, H. & Shintake, T. 2004 Consideration on the BPM alignment tolerance in X-ray FELs. Nucl. Instrum. Meth. Phys. Res. A 528 (1–2), 172178.CrossRefGoogle Scholar
Xie, M. 1995 Design optimization for an X-ray free electron laser driven by SLAC linac. In Proceedings Particle Accelerator Conference, vol. 1, pp. 183–185. IEEE.Google Scholar