Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T12:20:02.686Z Has data issue: false hasContentIssue false

Single-species Weibel instability of radiationless plasma

Published online by Cambridge University Press:  16 April 2010

L. V. BORODACHEV
Affiliation:
M.V. Lomonosov Moscow State University, Moscow 119991, Russia ([email protected])
D. O. KOLOMIETS
Affiliation:
M.V. Lomonosov Moscow State University, Moscow 119991, Russia ([email protected])

Abstract

A particle-in-cell numerical simulation of the electron Weibel instability is applied in a frame of Darwin (radiationless) approximation of the self-consistent fields of sparse plasma. As a result, we were able to supplement the classical picture of the instability and, in particular, to obtain the dependency of the basic characteristics (the time of development and the maximum field energy) of the thermal anisotropy parameter, to trace the dynamic restructuring of current filaments accompanying the non-linear stage of the instability and to trace in detail the evolution of the initial anisotropy of the electron component of plasma.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Weibel, E. S. 1959 Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 8384.CrossRefGoogle Scholar
[2]Pukhov, A. and Meyer-ter-Vehn, J. 1996 Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76 (21), 39753978.CrossRefGoogle ScholarPubMed
[3]Yoon, P. H. and Lui, A. T. Y. 1996 Nonlocal ion-Weibel instability in the geomagnetic tail. J. Geophys. Res. 101 (A3), 48994906.CrossRefGoogle Scholar
[4]Davidson, R. C., Startsev, E. A., Kaganovich, I. and Qin, H. 2005 Multispecies Weibel instability for intense ion beam propagation through background plasma. In: Proceedings of PAC, pp. 1952–1954.CrossRefGoogle Scholar
[5]Tsintsadze, L. N. and Shukla, P. K. 2008 Weibel instabilities in dense quantum plasmas. J. Plasma Phys. 74 (4), 431436.CrossRefGoogle Scholar
[6]Borodachev, L. V., Mingalev, I. V. and Mingalev, O. V. 2008 Vlasov–darwin system. In Encyclopedia of Low Temperature Plasma (Series B), VII, pp. 136146. Janus-K.Google Scholar
[7]Mikhailovsky, A. B. 1975 Theory of Plasma Instabilities. Atom Press.Google Scholar
[8]Morse, R. L. and Nielson, C. W. 1971 Numerical simulation of the Weibel instability in one and two dimensions. Phys. Fluids, 14 (11), 830840.CrossRefGoogle Scholar
[9]Frank-Kamenetskii, D. A. 1964 Lectures on Plasma Physics. Atom Press.Google Scholar
[10]Kalitkin, N. N. 1978 Numerical Methods. Nauka.Google Scholar
[11]Darwin, C. G. 1920 Dynamical motions of charged particles. Phil. Mag. 39, 537546.CrossRefGoogle Scholar
[12]Nielson, C. W. and Lewis, H. R. 1976 Particle-code methods in the nonradiative limit. Methods Comput. Phys. 16, 367388.Google Scholar
[13]Hockney, R. W. and Eastwood, J. W. 1988 Computer Simulation Using Particles. CRC Press.CrossRefGoogle Scholar
[14]Lee, R. and Lampe, M. 1973 Electromagnetic instabilities, filamentation, and focusing of relativistic electron beams. Phys. Rev. Lett. v. 31 (23), 13901393.CrossRefGoogle Scholar
[15]Medvedev, M. V., Fiore, M., Fonseca, R. A., Silva, L. O. and Mori, W. B. 2005 Long-time evolution of magnetic fields in relativistic gamma-ray burst shocks. Astrophys. J. v. 618, L75L78.CrossRefGoogle Scholar
[16]Polomarov, O., Kaganovich, I. and Shvets, G. 2008 Merging of super-Alfvénic current filaments during collisionless Weibel instability of relativistic electron beams. Phys. Rev. Lett. v. 101, 175001.CrossRefGoogle ScholarPubMed
[17]Lemons, D. S., Winske, D. and Gary, S. P. 1979 Nonlinear theory of the Weibel instability. J. Plasma Phys. 21 (2), 287300.CrossRefGoogle Scholar