Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T01:34:45.255Z Has data issue: false hasContentIssue false

Self-organized braiding in solar coronal loops

Published online by Cambridge University Press:  02 June 2015

M. A. Berger*
Affiliation:
CEMPS, University of Exeter, EX4 4QF, UK
M. Asgari-Targhi
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-15, Cambridge, MA 02138, USA
E. E. DeLuca
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-15, Cambridge, MA 02138, USA
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we investigate the evolution of braided solar coronal loops. We assume that coronal loops consist of several internal strands which twist and braid about each other. Reconnection between the strands leads to small flares and heating of the loop to x-ray temperatures. Using a method of generating and releasing braid structure similar to a forest fire model, we show that the reconnected field lines evolve to a self-organised critical state. In this state, the frequency distributions of coherent braid sequences as well as flare energies follow power law distributions. We demonstrate how the presence of net helicity in the loop alters the distribution laws.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Cambridge University Press 2015

References

REFERENCES

Artin, E. 1947 Ann. Math. 48, 101.Google Scholar
Aschwanden, M. J. 2004 Physics of the Solar Corona. An Introduction. Praxis Publishing Ltd., Chichester, UK: Springer-Verlag Berlin.Google Scholar
Aschwanden, M. J. 2013 Self-Organized Criticality Systems. Berlin Warsaw: Open Academic Press.Google Scholar
Asgari-Targhi, M., Schmelz, J. T., Imada, S., Pathak, S. and Christian, G. M. 2015, Submitted to Astrophys. J. Google Scholar
Asgari-Targhi, M. and vanAAAABallegooijen, A. A. 2012 Astrophys. J. 746, 81.Google Scholar
Asgari-Targhi, M., vanAAAABallegooijen, A. A., Cranmer, S. R. and DeLuca, E. E. 2013 Astrophys. J. 773, 111.Google Scholar
Asgari-Targhi, M., vanAAAABallegooijen, A. A. and Imada, S. 2013 Astrophys. J. 786, 28.Google Scholar
Babcock, K. L. and Westervelt, R. M. 1990 Phys. Rev. Lett. 64, 2168.Google Scholar
Bak, P., Tang, C. and Wiesenfeld, K. 1987 Phys. Rev. Lett. 59, 381.Google Scholar
Bak, P., Tang, C. and Wiesenfeld, K. 1988 Phys. Rev. A 38, 364.Google Scholar
Berger, M. A. 1990 Third-order invariants of randomly braided curves. In: Topological Fluid Mechanics, (ed. Moffatt, H. K. and Tsinober, A.). Cambridge: Cambridge University Press, pp. 440448.Google Scholar
Berger, M. A. 1993 Phys. Rev. Lett. 70, 705.Google Scholar
Berger, M. A. 1994 Space Sci. Rev. 68, 3.Google Scholar
Berger, M. A. and Asgari-Targhi, M. 2009 Astrophys. J. 705, 347.Google Scholar
Berger, T. E. and Title, A. M. 1996 Astrophys. J. 463, 365 Google Scholar
Carlson, J. M. and Langer, J. S. 1989 Phys. Rev. Lett. 62, 2632.Google Scholar
Cargill, P. J. and Klimchuk, J. A. 1997 Astrophys. J. 478, 799.Google Scholar
Charbonneau, P., McIntosh, S., Liu, H. and Bogdan, T. 2001 Sol. Phys. 203, 321.Google Scholar
Cirtain, J. W., Golub, L., Winebarger, A. R. et al. 2013 Nature 493, 501.Google Scholar
Craig, I. J. D. 2010 Sol. Phys. 266, 293.Google Scholar
Dahlburg, R. B., Klimchuk, J. A. and Antiochos, S. K. 2005 Astrophys. J. 622, 1191.Google Scholar
Datlowe, D. W., Elcan, M. J. and Hudson, H. S. 1974 Sol. Phys. 39, 155.Google Scholar
Dennis, B. R. 1985 Sol. Phys. 100, 465.Google Scholar
Einaudi, G. and Velli, M. 1999 Phys. Plasmas 6, 4146.Google Scholar
Galloway, R. K., Helander, P. and MacKinnon, A. L. 2006 Astrophys. J. 646, 615.Google Scholar
Golub, L. and Pasachoff, J. M. 2009 The Solar Corona. Cambridge: Cambridge University Press.Google Scholar
Ionson, J. A. 1985 Sol. Phys. 100, 289.Google Scholar
Ionson, J. A. and Hudson, H. S. 2010 Nature Phys. 6, 637.Google Scholar
Janse, Å. M. and Low, B. C. 2009 Astrophys. J. 690, 1089.Google Scholar
Janse, Å. M., Low, B. C. and Parker, E. N. 2010 Phys. Plasmas 17, 092901.Google Scholar
Kadanoff, L., Nagel, S. R., Wu, L. and Zhou, S. 1989 Phys. Rev. A 39, 6524.Google Scholar
Karpen, J. T., Antiochos, S. K., Dahlburg, R. B. and Spicer, D. S. 1993 Astrophys. J. 403, 769.Google Scholar
Klimchuk, J. A., Patsourakos, S. and Cargill, P. J. 2008 Astrophys. J. 628, 1351.Google Scholar
Lin, R. P., Schwartz, R. A., Kane, S. R., Pelling, R. M. and Hurley, K. C. 1984 Astrophys. J. 283, 421.Google Scholar
Linton, M. G., Dahlburg, R. B. and Antiochos, S. K. 2001 Astrophys. J. 553, 905.Google Scholar
Longcope, D. and Strauss, H. 1994 Sol. Phys. 149, 63.Google Scholar
Low, B. C. 2010 Sol. Phys. 266, 277.Google Scholar
Lu, E. T. and Hamilton, R. J. 1991 Astrophys. J. 380, L89.Google Scholar
Mandrini, C. H., Démoulin, P. and Klimchuk, J. A. 2000 Astrophys. J. 530, 999.Google Scholar
Milano, L. J., Gómez, D. O. and Martens, P. C. H. 1997 Astrophys. J. 490, 442.Google Scholar
Ng, C. S. and Bhattacharjee, A. 1998 Phys. Plasmas 5, 4028.Google Scholar
Parker, E. N. 1972 Astrophys. J. 174, 499.Google Scholar
Parker, E. N. 1983 Astrophys. J. 264, 642.Google Scholar
Parker, E. N. 1988 Astrophys. J. 330, 474.Google Scholar
Patsourakos, S. and Klimchuk, J. A. 2006 Astrophys. J. 647, 1452.Google Scholar
Priest, E. R., Heyvaerts, J. F. and Title, A. M. 2002 Astrophys. J. 576, 533.Google Scholar
Rappazzo, A. F., Velli, M., Einaudi, G. and Dahlburg, R. B. 2007 Astrophys. J. Lett. 657, L47.Google Scholar
Rappazzo, A. F., Velli, M., Einaudi, G. and Dahlburg, R. B. 2008 Astrophys. J. 677, 1348.Google Scholar
Reep, J. W., Bradshaw, S. J. and Klimchuk, J. A. 2013 Astrophys. J. 746, 193 Google Scholar
Schrijver, C. J. 2007 Astrophys. J. 662, L119.Google Scholar
Schrijver, C. J. and Zwaan, C. 2000 Solar and Stellar Magnetic Activity. Cambridge: Cambridge University Press.Google Scholar
Shibata, K. et al. 2007 Science 318, 1591.Google Scholar
Song, Y. and Lysak, R. L. 1989 J. Geophys. Res-Space Phys. 94, 52735281.Google Scholar
vanAAAABallegooijen, A. A. 1986 Astrophys. J. 311, 1001.Google Scholar
vanAAAABallegooijen, A. A., Asgari-Targhi, M. and Berger, M. A. 2014 Astrophys. J. 787, 87.Google Scholar
vanAAAABallegooijen, A. A., Asgari-Targhi, M., Cranmer, S. R. and DeLuca, E. E. 2011 Astrophys. J. 736, 3.Google Scholar
Verdini, A. and Velli, M. 2007 Astrophys. J. 662, 669.Google Scholar
Vlahos, L., Georgoulis, M., Kluiving, R. and Paschos, P. 1995 Astron. Astrophys. 299, 897.Google Scholar
Wilmot-Smith, A. L., Hornig, G. and Pontin, D. I. 2009 Astrophys. J. 704, 1288.Google Scholar
Wilmot-Smith, A. L., Pontin, D. I., Yeates, A. R. and Hornig, G. 2011 Astron. Astrophys. 536, A67.Google Scholar
Winebarger, A. R. and Warren, H. P. 2005 Astrophys. J. 626, 543.Google Scholar
Wright, A. and Berger, M. A. 1989 J. Geophys. Res. 94, 1295.Google Scholar