Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T13:15:47.306Z Has data issue: false hasContentIssue false

Self-modulation of a nonlinear ion wave packet

Published online by Cambridge University Press:  13 March 2009

S. Watanabe
Affiliation:
Laboratoire de Physique des Plasmas (Laboratoire associé au CNRS), Université de Paris-Sud, 91405 Orsay, France

Extract

The modulational instability of the ion wave is observed experimentally. Two kinds of wave packets are launched in the plasma by means of a grid. One is a broad-band wave packet excited by a positive step voltage. The other is a quasi-monochromatic wave packet modulated by a pulse. For the step voltage response, we observe a large oscillation in the wave front which evolves to Korteveg–de Vries solitons and a small amplitude wave packet in the tail. The wave packet becomes modulationally unstable and divides into smaller wave packets. Whenever the wave packet is modulated, the spread of the packet is suppressed and is much smaller than is expected from linear dispersion. For the quasi-monochromatic wave packet, we also observe the modulational instability if the carrier frequency is high. The frequency of the carrier is shifted by the instability. The result of the quasi-monochromatic wave packet is qualitatively explained by the modified nonlinear Schrödinger equation taking account of the wave-particle interaction at the group velocity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asano, N., Taniuti, T. & Yajima, N. 1969 J. Math. Phys. 10, 2020.CrossRefGoogle Scholar
Berezin, Y. A. & Karpman, V. I. 1967 Soviet Phys. JETP, 14, 1049.Google Scholar
Hershkowitz, N., Romesser, T. & Montgomery, D. 1972 Phys. Rev. Lett. 29, 1586.CrossRefGoogle Scholar
Ichikawa, Y. H., Imamura, T. & Taniuti, T. 1972 J. Phys. Soc. Japan, 33, 189.CrossRefGoogle Scholar
Ichikawa, Y. H., Suzuki, T. & Fried, B. D. 1973 J. Plasma Phys. 10, 219.CrossRefGoogle Scholar
Ichikawa, Y. H. & Taniuti, T. 1973 J. Phys. Soc. Japan, 34, 513.CrossRefGoogle Scholar
Ikezi, H. 1973 Phys. Fluids, 16, 1668.CrossRefGoogle Scholar
Ikezi, H. & Kiwamoto, Y. 1971 Phys. Rev. Lett. 27, 718.CrossRefGoogle Scholar
Ikezi, H., Taylor, R. J. & Baker, D. R. 1970 Phys. Rev. Lett. 25, 11.CrossRefGoogle Scholar
Kakutani, T. & Sugimoto, N. 1974 Phys. Fluids, 17, 1617.CrossRefGoogle Scholar
Karpman, V. I. 1975 Non-linear Waves in Dispersive Media. Pergamon.CrossRefGoogle Scholar
Limpaecher, R. & MacKenzie, K. R. 1973 Rev. Sci. Instrum. 44, 726.CrossRefGoogle Scholar
Narayanamurti, V. & Varma, C. M. 1970 Phys. Rev. Lett. 25, 1105.CrossRefGoogle Scholar
Shimizu, K. & Ichikawa, Y. H. 1973 J. Phys. Soc. Japan, 33, 789.CrossRefGoogle Scholar
Taniuti, T. & Yajima, N. 1969 J. Math. Phys. 10, 1369.CrossRefGoogle Scholar
Tappert, F. D. & Judice, C. N. 1972 Phys. Rev. Lett. 29, 1308.CrossRefGoogle Scholar
Washimi, H. & Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Watanabe, S. 1975 a J. Plasma Phys. 13, 217.CrossRefGoogle Scholar
Watanabe, S. 1975 b J. Plasma Phys. 14, 353.CrossRefGoogle Scholar
Watanabe, S. 1976 J. Plasma Phys. 15, 67.CrossRefGoogle Scholar
Watanabe, S., Ishihara, O. & Tanaca, H. 1975 Plasma Phys. 17, 345.CrossRefGoogle Scholar
Yajima, N., Oikawa, M., Satsuma, J. & Namba, C. 1975 Reports of Research Institute for Applied Mechanics, Kyushu University, 22, 89.Google Scholar
Yuen, H. C. & Lake, B. M. 1975 Phys. Fluids, 18, 956.CrossRefGoogle Scholar
Zakharov, V. E. & Shabat, A. B. 1972 Soviet Phys. JETP, 34, 62.Google Scholar