Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T13:35:17.207Z Has data issue: false hasContentIssue false

Self-consistent model of electron drift mode turbulence

Published online by Cambridge University Press:  01 February 2008

ZHANNA N. ANDRUSHCHENKO
Affiliation:
Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
MARTIN JUCKER
Affiliation:
École Polytechnique Fédérale de Lausanne, Association EURATOM-Confédération Suisse, CH-1015 Lausanne, Switzerland
VLADIMIR P. PAVLENKO
Affiliation:
Uppsala University and EURATOM-VR Fusion Association, SE-751 20 Uppsala, Sweden ([email protected])

Abstract

The nonlinear dynamics of magnetic electron drift mode turbulence are outlined and the generation of large-scale magnetic structures in a non-uniform magnetized plasma by turbulent Reynolds stress is demonstrated. The loop-back of large-scale flows on the microturbulence is elucidated and the modulation of the electron drift mode turbulence spectrum in a medium with slowly varying parameters is presented. The wave kinetic equation in the presence of large-scale flows is derived and it can be seen that the small-scale turbulence and the large-scale structures form a self-regulating system. Finally, it is shown by the use of quasilinear theory that the shearing of microturbulence by the flows can be described by a diffusion equation in k-space and the corresponding diffusion coefficients are calculated.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Shukla, P. K., Yu, M. Y., Rahman, H. U. and Spatscheck, K. H. 1981 Phys. Rev. A 23, 321.CrossRefGoogle Scholar
[2]Diamond, P. H., Itoh, S.-I., Itoh, K. and Hahm, T. S. 2005 Plasma Phys. Control. Fusion 47, 35.CrossRefGoogle Scholar
[3]Hasegawa, A., Maclennan, C. and Kodama, Y. 1979 Phys. Fluids 22, 2122.CrossRefGoogle Scholar
[4]Busse, F. 1994 Chaos 4, 123.CrossRefGoogle Scholar
[5]Sagdeev, R., Shapiro, V. and Shevchenko, V. 1979 Sov. J. Plasma Phys. 4, 306.Google Scholar
[6]Beyer, P., Benkadda, S., Garbet, X. and Diamond, P. H. 2000 Phys. Rev. Lett. 85, 4892.CrossRefGoogle Scholar
[7]Onishchenko, O., Pokhotelov, O., Sagdeev, R., Shukla, P. and Stenflo, L. 2004 Nonlinear Proc. Geophys. 11, 241.CrossRefGoogle Scholar
[8]National Oceanography Centre, University of Southampton, England. http://www.soc.soton.ac.uk/JRD/SAT/Rossby/Rossbyintro.html.Google Scholar
[9]Shukla, P. K. and Stenflo, L. 2002 Eur. Phys. J. D 20, 103.Google Scholar
[10]Smolyakov, A., Diamond, P. and Malkov, M. 2000 Phys. Rev. Lett. 84, 491.CrossRefGoogle Scholar
[11]Itoh, K., Hallatschek, K., Itoh, S.-I., Diamond, P. and Toda, S. 2005 Phys. Plasmas 12, 062303.Google Scholar
[12]Reames, D. V., Meyer, J. P. and Rosenvinge, T. T. 1994 Astrophys. J. 90, 649.CrossRefGoogle Scholar
[13]Biskamp, D. 1994 Phys. Rep. 237, 179, and references therein.Google Scholar
[14]Vainshtein, S. I. and Cattaneo, F. 1992 Astrophys. J. 393, 165.CrossRefGoogle Scholar
[15]Longcope, D. W. and Sudan, R. N. 1994 Astrophys. J. 437, 491.CrossRefGoogle Scholar
[16]Aly, J. J. 1992 Plasma Phys. Control. Fusion 34, 1785.CrossRefGoogle Scholar
[17]Holland, C. and Diamond, P. 2002 Phys. Plasmas 9, 3857.CrossRefGoogle Scholar
[18]Smolyakov, A., Diamond, P. and Kishimoto, Y. 2002 Phys. Plasmas 9, 3826.CrossRefGoogle Scholar
[19]Tatarakis, M. et al. 2002 Phys. Plasmas 9, 2244.CrossRefGoogle Scholar
[20]Liu, S. Q. and Li, X. Q. 2000 Phys. Plasmas 7, 3405.CrossRefGoogle Scholar
[21]Yu, M. Y., Shukla, P. K. and Stenflo, L. 1987 Phys. Fluids 30, 3299.CrossRefGoogle Scholar
[22]Stenflo, L., Yu, M. Y. and Shukla, P. K. 1990 Phys. Fluids B 2, 1083.CrossRefGoogle Scholar
[23]Vedenov, A., Gordeev, A. and Rudakov, L. 1967 Plasma Phys. 9, 719.CrossRefGoogle Scholar
[24]Lebedev, V., Diamond, P., Shapiro, V. and Soloviev, G. 1995 Phys. Plasmas 2, 4420.CrossRefGoogle Scholar
[25]Smolyakov, A. and Diamond, P. 1999 Phys. Plasmas 6, 4410.CrossRefGoogle Scholar
[26]Tidman, A. and Shanny, R. 1974 Phys. Fluids 17, 1207.CrossRefGoogle Scholar
[27]Jones, R. 1983 Phys. Rev. Lett. 51, 1269.CrossRefGoogle Scholar
[28]Yu, M. and Stenflo, L. 1985 Phys. Fluids 28, 3447.CrossRefGoogle Scholar
[29]Stenflo, L., Shukla, P. K. and Yu, M. Y. 1987 Phys. Rev. A 36, 955.CrossRefGoogle Scholar
[30]Nycander, J., Pavlenko, V. and Stenflo, L. 1987 Phys. Fluids 30, 1367.CrossRefGoogle Scholar
[31]Pavlenko, V. and Uby, L. 1993 Phys. Fluids B 5, 1980.CrossRefGoogle Scholar
[32]Nycander, J. and Pavlenko, V. 1991 Phys. Fluids B 3, 1386.CrossRefGoogle Scholar
[33]Pavlenko, V. and Uby, L. 1994 Phys. Plasmas 1, 2140.CrossRefGoogle Scholar
[34]Andruschenko, Z. and Pavlenko, V. 2004 Phys. Plasmas 11, 1402.CrossRefGoogle Scholar
[35]Diamond, P. and Kim, Y.-B. 1991 Phys. Fluids B 3, 1626.Google Scholar
[36]Smolyakov, A. I., Diamond, P. H. and Medvedev, M. V. 2000 Phys. Plasmas 7, 3987.CrossRefGoogle Scholar