Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T16:26:12.273Z Has data issue: false hasContentIssue false

A rotating and magnetized three-dimensional hot plasma equilibrium in a gravitational field

Published online by Cambridge University Press:  01 April 2015

Peter J. Catto*
Affiliation:
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Sergei I. Krasheninnikov
Affiliation:
Department of Mechanical & Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A rotating and magnetized three-dimensional axisymmetric equilibrium for hot plasma confined by a gravitational field is found. The plasma density and current can exhibit strong equatorial plane localization, resulting in disk equilibria with open magnetic field lines. The associated equatorial plane pinching results in magnetic field flaring, implying a strong gravitational squeezing of the plasma carrying ambient magnetic field lines toward the gravitational source. At high plasma pressure, the magnetic field becomes strongly radial outside the disk. The model predicts the rotation frequency bound, the condition for a plasma disk, and the requirement for strong magnetic field flaring.

Type
Letter
Copyright
Copyright © Cambridge University Press 2015 

References

REFERENCES

Balbus, S. A. and Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214222.CrossRefGoogle Scholar
Blandford, R. D. and Payne, D. G. 1982 Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astr. Soc. 199, 883903.CrossRefGoogle Scholar
Catto, P. J., Bernstein, I. B. and Tessarotto, M. 1987 Ion transport in toroidally rotating tokamak plasmas. Phys. Fluids 30, 27842795.CrossRefGoogle Scholar
Catto, P. J. and Krasheninnikov, S. I. 1999 Effects of rotation on a finite plasma pressure equilibrium in a dipolar magnetic field. Phys. Lett. A 258, 153157.CrossRefGoogle Scholar
Chandrasekhar, S. 1956 Axisymmetric magnetic fields and fluid motions. Ap. J. 124, 232243.CrossRefGoogle Scholar
Ghanbari, J. and Abbassi, S. 2004 Equilibria of a self-gravitating, rotating disc around a magnetized compact object. Mon. Not. Roy. Astr. Soc. 350, 14371444.CrossRefGoogle Scholar
Helander, P. 2014 Theory of plasma confinement in non-axisymmetric magnetic fields. Rep. Prog. Phys. 77, 087001087035.CrossRefGoogle ScholarPubMed
Hinton, F. L. and Wong, S. K. 1985 Neoclassical ion transport in rotating axisymmetric plasmas. Phys. Fluids 28, 30823098.CrossRefGoogle Scholar
Krasheninnikov, S. I. and Catto, P. J. 1999 Equilibrium of a gravitating plasma in a dipolar magnetic field. Phys. Lett. A 260, 502506.CrossRefGoogle Scholar
Krasheninnikov, S. I., Catto, P. J. and Hazeltine, R. D. 1999 A magnetic dipole equilibrium solution at finite plasma pressure. Phys. Rev. Lett. 82, 26892692.CrossRefGoogle Scholar
Krasheninnikov, S. I., Catto, P. J. and Hazeltine, R. D. 2000 Plasma equilibria in dipolar magnetic configurations. Phys. Plasmas 7, 18311838.CrossRefGoogle Scholar
Lovelace, R. V. E., Mehanian, C., Mobarry, C. M. and Sulkanen, M. E. 1986 Theory of axisymmetric magnetohydrodynamic flows: disks. Ap J. S. 62, 137.CrossRefGoogle Scholar
McClements, K. C. and Thyagaraya, A. 2001 Azimuthally symmetric magnetohydrodynamic and two-fluid equilibria with arbitrary flows. Mon. Not. Roy. Astr. Soc. 323, 733742.CrossRefGoogle Scholar
Ogilvie, G. I. 1997 The equilibrium of a differentially rotating disc containing a poloidal magnetic field. Mon. Not. R. Astron. Soc. 288, 6377.CrossRefGoogle Scholar
Prasanna, A. R., Tripathy, S. C. and Das, A. C. 1989 Equilibrium structure for a plasma magnetosphere around compact objects. J. Astrophys. Astr. 10, 2134.CrossRefGoogle Scholar
Throumoulopoulos, G. N. and Tasso, H. 2001 Axisymmetric equilibria of a gravitating plasma with incompressible flows. Geophys. Astroph. Fluid Dyn. 94, 249262.CrossRefGoogle Scholar
Velikhov, E. P. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 36, 995998.Google Scholar