Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T06:39:05.602Z Has data issue: false hasContentIssue false

Role of return current in the excitation of electronmagnetohydrodynamic structures by biased electrodes

Published online by Cambridge University Press:  31 January 2012

G. RAVI
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, India ([email protected])
S. K. MATTOO
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, India ([email protected])
L. M. AWASTHI
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, India ([email protected])
P. K. SRIVASTAVA
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, India ([email protected])
V. P. ANITHA
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, India ([email protected])

Abstract

This paper presents an experimental investigation on the role of return current in excitation of electronmagnetohydrodynamic (EMHD) structures. It is shown that only when return currents are excited parallel or anti-parallel to the background magnetic field the EMHD structures can be excited by a biased electrode in the plasma.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Kingsep, A. S., Chukbar, K. V. and Yankov, V. V. 1990 Electromagnetohydrodynamics. In: Reviews of Plasma Physics, Vol. 16 (ed. Kadomstev, B.). New York: Consultants Bureau, p. 243.Google Scholar
[2]Stenzel, R. L., Urrutia, J. M. and Rousculp, C. L. 1993 Phys. Fluids B 5, 325.CrossRefGoogle Scholar
[3]Urrutia, J. M., Stenzel, R. L. and Rousculp, C. L. 1994 Phys. Plasmas 1, 1432.Google Scholar
[4]Rousculp, C. L., Stenzel, R. L. and Urrutia, J. M. 1995 Phys. Plasmas 2, 4083.CrossRefGoogle Scholar
[5]Urrutia, J. M., Stenzel, R. L. and Rousculp, C. L. 1995 Phys. Plasmas 2, 1100.CrossRefGoogle Scholar
[6]Stenzel, R. L., Urrutia, J. M. and Rousculp, C. L. 1995 Phys. Plasmas 2, 1114.Google Scholar
[7]Gomberoff, K. and Frutchman, A. 1993 Phys. Plasmas 5, 2841.Google Scholar
[8]Mattoo, S. K., Anitha, V. P., Awasthi, L. M., Ravi, G. and LVPD Team 2001 Rev. Sci. Instrum. 72, 3864.Google Scholar
[9]Awasthi, L. M., Ravi, G., Anitha, V. P., Srivastava, P. K. and Mattoo, S. K. 2003 Pl. Sour. Sc. Tech. 12, 158.CrossRefGoogle Scholar
[10]Stenzel, R. L. 1991 Rev. Sci. Intrum. 62, 130.CrossRefGoogle Scholar
[11]Press, W. H., Teukolsky, S. A., Vellerling, W. T. and Flannery, B. P. 1991 Numerical Recipes in Fortran: The Art of Scientific Computing. New York: Cambridge University Press.Google Scholar
[12]Patel, G. B., Srivastava, P. K., Awasthi, L. M., Anitha, V. P., Ravi, G., Patel, P. J., Baruah, U. K. and Mattoo, S. K. 2002 Rev. Sci. Instrum. 73, 1779.Google Scholar
[13]Helliwell, R. A. 1965 Whistlers and Related Ionospheric Phenomena. Stanford, CA: Stanford University.Google Scholar
[14]Stenzel, R. L. and Urrutia, J. M. 1997 Phys. Plasmas 4, 26.CrossRefGoogle Scholar