Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T11:19:49.687Z Has data issue: false hasContentIssue false

The restrictions on the assumption about conservation of parameters of orbit for submicron particles in the Earth’s plasmasphere in light of the corotational electric field

Published online by Cambridge University Press:  07 December 2018

A. B. Yakovlev*
Affiliation:
Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
E. K. Kolesnikov
Affiliation:
Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
S. V. Chernov
Affiliation:
Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
*
Email address for correspondence: [email protected]

Abstract

The influence of the corotational electric field on the possibility of long holding of micro-particles with radii of the order of some hundredths of micrometers and quasi-equilibrium charge moving along weakly elliptic orbits in the plasmasphere of the Earth is considered by analytical and numerical methods. It is shown that, unlike the magnetic field, the corotational electric field causes a slow change in the shape of the orbit.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, V. I. 1963 Small divisor and stability problems in classical and celestial mechanics. Usp. Mat. Nauk. 18, 55191.Google Scholar
Dullin, H. R., Horanyi, M. & Howard, J. E. 2002 Generalizations of the stormer problem for dust grain orbits. Physica D 171, 178195.Google Scholar
Hill, J. R. & Wipple, E. C. 1985 Charging of large structures in space with application to the solar sail spacecraft. J. Spacecr. Rockets 22, 245253.Google Scholar
Horanyi, M., Houpis, H. L. F. & Mendis, D. A. 1988 Charged dust in the Earth’s magnetosphere. Astrophys. Space Sci. 144, 215229.Google Scholar
Howard, J. E. 1999 Stability of relative equilibria in arbitrary axisymmetric gravitational and magnetic fields. Celestial Mech. Dyn. Astronom. 74, 1957.Google Scholar
Howard, J. E., Dullin, H. R. & Horanyi, M. 2000 Stability of Halo orbits. Phys. Rev. Lett. 84, 32443247.Google Scholar
Howard, J. E., Horanyi, M. & Stewart, G. R. 1999 Global dynamics of charged dust particles in planetary magnetospheres. Phys. Rev. Lett. 83, 39933996.Google Scholar
Juhasz, A. & Horanyi, M. 1997 Dynamics of charged space debris in the Earth’s plasma environment. J. Geophys. Res. A 102, 72377246.Google Scholar
Klumov, B. A., Morfill, G. E. & Popel, S. I. 2005 Formation of structures in a dusty ionosphere. J. Exp. Theoret. Phys. 100 (1), 152164.Google Scholar
Kolesnikov, E. K. 2001 Peculiarities of the orbital motion of submicron particles in the Earth’s plasmasphere. Cosmic Res. 39 (1), 9297.Google Scholar
Kolesnikov, E. K. & Chernov, S. V. 1997 Microparticle residence time in low near-Earth circular orbits. Cosmic Res. 35 (2), 206207.Google Scholar
Kolesnikov, E. K. & Chernov, S. V. 2003 Dimensions of microparticles trapped by the Earth’s magnetic field at various geomagnetic activity levels. Cosmic Res. 41 (5), 526527.Google Scholar
Kolesnikov, E. K. & Chernov, S. V. 2018 Investigation of the conditions of the long-term orbital existence of submicron particles in a near Earth space. Fiz. Mekh. 9, 4969; Strong Nonequilibrium Processes in Mechanics of Nonuniform Media. Saint Petersburg, Russia.Google Scholar
Kolesnikov, E. K., Chernov, S. V. & Yakovlev, A. B. 1999 Lifetime of microparticles in a geosynchronous orbit. Cosmic Res. 37 (4), 422.Google Scholar
Kolesnikov, E. K., Chernov, S. V. & Yakovlev, A. B. 2007 On Correctness of canonical formulation of the problem of motion of submicron particles in the Earth’s plasmasphere. Cosmic Res. 45 (6), 471475.Google Scholar
Kolesnikov, E. K. & Yakovlev, A. B. 2018 Analytical researches of motion of bodies with variable electric charge. Fiz. Mekh. 9, 227240; Strong Nonequilibrium Processes in Mechanics of Nonuniform Media. Saint Petersburg, Russia.Google Scholar
Merzlyakov, E. G. 1996 On the motion of submicron particles in low near-Earth orbits. Kosm. Issled. 34 (5), 558560.Google Scholar
Mozer, Y. 1981 Some aspects of integrable Hamiltonian systems. Usp. Mat. Nauk. 36, 109151.Google Scholar
Schaffer, L. & Burns, J. A. 1994 Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains. J. Geophys. Res. A 99, 1721117223.Google Scholar
Vavilov, S. A. & Kolesnikov, E. K. 1981 Some issues of dynamics of strongly charged bodies in open space. Fiz. Mekh. 4, 168180; Dynamical Processes in Gases and Solid Bodies. Leningrad, Russia.Google Scholar
Yakovlev, A. B., Kolesnikov, E. K. & Chernov, S. V. 2017 Analytical research on the possibility of the long orbital existence of submicron particles in the Earth’s plasmasphere by the methods of the KAM theory. Plasma Phys. 83, 905830306.Google Scholar
Yakovlev, A. B., Kolesnikov, E. K. & Chernov, S. V. 2018 Investigation of the influence of the field of corotation on the possibility of the long-term orbital existence of submicron particles in the plasma-sphere of the Earth. Phys. Astron. Intl J. 2, 00047.Google Scholar