Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T23:29:38.839Z Has data issue: false hasContentIssue false

Relativistic transverse modulational instability of two electron cyclotron waves

Published online by Cambridge University Press:  13 March 2009

Kwang-Sup Yang
Affiliation:
Department of Physics, Hanyang University, Seoul 133–791, Korea

Abstract

The transverse modulational instabilities of two finite-amplitude electron-cyclotron waves due to the ponderomotive force and relativistic mass variation of electrons are considered using the coupled nonlinear Schrödinger equation model. The waves are modulationally unstable, with maximum growth rate larger than that of a single wave. The stable waves can be unstable by the effect of coupling. The instability is caused only by the mass variation of electrons, and the contribution of the ponderomotive force is negligibly small. The instability of copropagating waves has a convective nature and that due to the counterpropagating waves has an absolute nature, no matter how large the pump intensities are. The threshold of modulational instability is also considered for finite-length plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, G. P. 1989 Nonlinear Fibre Optics. Academic Press, New York.Google Scholar
Bers, A., Ram, A. K. & Francis, G. 1984 Phys. Rev. Lett. 53, 14571460.CrossRefGoogle Scholar
Chegotov, M. V., Silin, V. P. & Stefan, V. 1993 Phys. Lett. 176 A, 237242.CrossRefGoogle Scholar
Gordon, W. E. & Duncan, L. M. 1983 Radio Sci. 18, 291298.CrossRefGoogle Scholar
Hall, L. S. & Heckrott, W. 1967 Phys. Rev. 166, 120128.CrossRefGoogle Scholar
Hasegawa, A. 1970 Phys. Rev. A l, 17461750.CrossRefGoogle Scholar
Karpman, V. I. & Washimi, H. 1977 J. Plasma Phys. 18, 173187.CrossRefGoogle Scholar
Luther, G. G. & McKinstrie, C. J. 1990 J. Opt. Soc. Am. B 7, 11251141.CrossRefGoogle Scholar
McKinstrie, C. J. & Bingham, R. 1989 Phys. Fluids B 1, 230237.CrossRefGoogle Scholar
Shukla, P. K. 1992 Physica Scripta 45, 618620.CrossRefGoogle Scholar
Shukla, P. K. & Stenflo, L. 1984 Phys. Rev. A 30, 21102112.CrossRefGoogle Scholar
Shukla, P. K. & Stenflo, L. 1986 Phys. Fluids 29, 24792483.CrossRefGoogle Scholar
Stenflo, L., Yu, M. Y. & Shukla, P. K. 1986 J. Plasma Phys. 36, 447452.CrossRefGoogle Scholar
Stubbe, P. & Kopka, H. 1983 Radio Sci. 18, 831834.CrossRefGoogle Scholar
Vladimirov, S. V. & Tsytovich, V. N. 1990 Soviet Phys. JETP 71, 715721.Google Scholar
Yang, K. S. 1995a J. Korean Phys. Soc. 28, 311316.Google Scholar
Yang, K. S. 1995b Phys. Plasmas 2, 678685.CrossRefGoogle Scholar
Yang, K. S. 1995c J. Korean Phys. Soc. 28, 7684.Google Scholar
Zakharov, V. E. 1972 Soviet Phys. JETP 35, 908914.Google Scholar