Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T01:30:57.898Z Has data issue: false hasContentIssue false

Relativistic oblique magnetohydrodynamic shocks

Published online by Cambridge University Press:  13 March 2009

G. M. Webb
Affiliation:
University of ArizonaDepartment of Planetary Sciences, Lunar and Planetary Laboratory, Tucson, Arizona 85721, U.S.A.
G. P. Zank
Affiliation:
Department of Mathematics and Applied Mathematics, University of Natal, Durban, Natal, R.S.A.
J. F. McKenzie
Affiliation:
Department of Mathematics and Applied Mathematics, University of Natal, Durban, Natal, R.S.A.

Abstract

Special relativistic magnetohydrodynamic shock waves in a perfect gas of infinite conductivity and constant adiabatic index are analysed. It is shown that the Rankine-Hugoniot equations for such shocks may be reduced to a seventh degree polynomial for the downstream dynamical volume ω, with the polynomial coefficients depending on the upstream state (ω equals the specific volume times the ratio of the energy density of the fluid (omitting electromagnetic terms) to the fluid rest mass energy density). In the non-relativistic limit, the polynomial equation reduces to a relation between the upstream and downstream Alfvénic Mach numbers, previously obtained by Cabannes. The equation for ω classifies in a natural way both shocks in which the electric field may be eliminated by transforming to the de Hoffman–Teller frame, and shocks for which this is not possible. The equation is used to determine the downstream state of relativistic shocks for a given upstream state as specified by the plasma beta, magnetic field obliquity, and flow speed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, A., Liubarskii, G. & Polovin, R. 1959 Soviet Phys. JETP, 35, 507.Google Scholar
Anderson, E. 1963 Magnetohydrodynamic Shock Waves. MIT Press.CrossRefGoogle Scholar
Bazer, J. & Ericson, W. 1959 Ap. J. 129, 758.CrossRefGoogle Scholar
Cabannes, H. 1970 Theoretical Magnetofluid Dynamics. Academic.Google Scholar
Carioli, S. M. 1986 Phys. Fluids, 29, 672.Google Scholar
Chapline, G. F. & Granik, A. 1984 Phys. Fluids, 27, 1981.CrossRefGoogle Scholar
Colgate, S. A. & Johnson, M. H. 1960 Phys. Rev. Lett. 5, 235.CrossRefGoogle Scholar
Colgate, S. A. & White, R. N. 1966 Ap. J. 143, 626.CrossRefGoogle Scholar
Eltgroth, P. G. 1971 Phys. Fluids, 14, 2631.CrossRefGoogle Scholar
Ericson, W. & Bazer, J. 1960 Phys. Fluids, 3, 631.Google Scholar
De Hoffman, F. & Teller, E. 1950 Phys. Rev. 80, 692.Google Scholar
Johnson, M. H. & McKee, C. F. 1971 Phys. Rev. D, 3, 858.Google Scholar
Königl, A. 1980 Phys. Fluids, 23, 1083.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1960 Electrodynamics of Continuons Media. Pergamon.Google Scholar
Lichnerowicz, A. 1967 Relativistic Hydrodynamics and Magnetohydrodynamics. Benjamin.Google Scholar
Lichnerowicz, A. 1970 Physica Scripta, 2, 221.CrossRefGoogle Scholar
Lichnerowicz, A. 1975 J. Math. Phys. 17, 2135.CrossRefGoogle Scholar
May, M. M. & White, R. N. 1966 Phys. Rev. 141, 1232.Google Scholar
Misner, C. W., Thorne, K. S. & Wheelee, J. A. 1973 Gravitation. Freeman.Google Scholar
Saini, G. L. 1961 J. Math. Mech. 10, 887.Google Scholar
Saini, G. L. 1976 J. Math. Anal. Applic. 56, 711.Google Scholar
Signore, M. 1984 Physica Scripta, T7, 64.Google Scholar
Singh, H. N. 1984 J. Phys. A, 17, 1547.Google Scholar
Synge, J. L. 1957 The Relativistic Gas. North Holland.Google Scholar
Taub, A. H. 1948 Phys. Rev. 74, 328.Google Scholar
Thompson, W. B. 1962 An Introduction to Plasma Physics. Pergamon.Google Scholar
Thorne, K. S. 1973 Ap. J. 179, 897.CrossRefGoogle Scholar
Wilson, J. R. 1972 Ap. J. 173, 431.Google Scholar