Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T13:04:02.610Z Has data issue: false hasContentIssue false

Relativistic dielectric tensor of a Maxwellian plasma for electron cyclotron waves at arbitrary propagation angles

Published online by Cambridge University Press:  13 March 2009

A. C. Airoldi
Affiliation:
Istituto di Fisica del Plasma, Associazione CNR-EURATOM, Via Bassini, 15, 20133 Milano, Italy
A. Orefice
Affiliation:
Istituto di Fisica del Plasma, Associazione CNR-EURATOM, Via Bassini, 15, 20133 Milano, Italy

Abstract

The relativistic dielectric tensor of a magnetized Maxwellian plasma is obtained in a general way, for electron cyclotron waves at arbitrary incident angle. A new expression is provided for the computation of the relativistic (Shkarofsky) dispersion functions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramovitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. Dover.Google Scholar
Bekefi, G. 1966 Radiation Processes in Plamas. Wiley.Google Scholar
Dnestrovskii, Yu.N., Kostomarov, D. P. & Skrydlov, N. V. 1964 Soviet Phys. Tech. Phys. 8, 691.Google Scholar
Fidone, I., Granata, G., Ramponi, G. & Meyer, R. L. 1978 Phys. Fluids, 21, 645.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Lazzaro, E. & Orefice, A. 1980 Phys. Fluids, 11, 2330.CrossRefGoogle Scholar
Maroli, C. & Petriilo, V. 1981 Physica Scripta, 24, 955.CrossRefGoogle Scholar
Shkarofsky, I. P. 1966 Phys. Fluids, 9, 561.CrossRefGoogle Scholar
Trubnikov, B. A. 1959 Plasma Physics and the Problem of Controlled Thermonuclear Reactions (ed. Leontovich, M. A.), vol. 3. Pergamon.Google Scholar