Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T00:34:21.982Z Has data issue: false hasContentIssue false

Reevaluation of the Braginskii viscous force for toroidal plasma

Published online by Cambridge University Press:  13 June 2011

ROBERT W. JOHNSON*
Affiliation:
Alphawave Research, Atlanta, GA 30238, USA ([email protected])

Abstract

The model by Braginskii [1] (Braginskii, S. I. 1965 Transport processes in plasma. In: Review of Plasma Physics, Vol. 1 (ed. M.A. Leontovich). New York, NY: Consultants Bureau, pp. 205–311) for the viscous stress tensor is used to determine the shear and gyroviscous forces acting within a toroidally confined plasma. Comparison is made to a previous evaluation, which contains an inconsistent treatment of the radial derivative and neglects the effect of the pitch angle. Parallel viscosity contributes a radial shear viscous force, which may develop for sufficient vertical asymmetry to the ion velocity profile. An evaluation is performed of this radial viscous force for a tokamak near equilibrium, which indicates qualitative agreement between theory and measurement for impure plasma discharges with strong toroidal flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Braginskii, S. I. 1965 Transport processes in plasma. In Review of Plasma Physics, Vol. 1 (ed. Leontovich, M. A.). New York, NY: Consultants Bureau, pp. 205311.Google Scholar
[2]Stacey, W. M., Johnson, R. W. and Mandrekas, J. 2006 A neoclassical calculation of toroidal rotation profiles and comparison with DIII-D measurements. Phys. Plasmas 13 (6), 062508.CrossRefGoogle Scholar
[3]Stacey, W. M. and Sigmar, D. J. 1985 Viscous effects in a collisional tokamak plasma with strong rotation. Phys. Fluids 28 (9), 28002807.CrossRefGoogle Scholar
[4]Stacey, W. M., Bailey, A. W., Sigmar, D. J. and Shaing, K. C. 1985 Rotation and impurity transport in a tokamak plasma with directed neutral beam injection. Nucl. Fusion 25 (4), 463477.CrossRefGoogle Scholar
[5]Mikhailovskii, A. B. and Tyspin, V. S. 1984 Viscosity of a collisional plasma in a curvilinear magnetic field and drift equilibrium (rotation) of a plasma. Sov. J. Plasma Phys. 10, 51.Google Scholar
[6]Simakov, A. N. and Catto, P. J. 2003 Drift-ordered fluid equations for field-aligned modes in low-beta collisional plasma with equilibrium pressure pedestals. Phys. Plasmas 10 (12), 47444757.CrossRefGoogle Scholar
[7]Catto, P. J. and Simakov, A. N. 2004 A drift-ordered short mean free path description for magnetized plasma allowing strong spatial anisotropy. Phys. Plasmas 11 (1), 90102.CrossRefGoogle Scholar
[8]Catto, P. J. and Simakov, A. N. 2005 Evaluation of the neoclassical radial electric field in a collisional tokamak. Phys. Plasmas 12 (1), 012501.CrossRefGoogle Scholar
[9]Ramos, J. J. 2005 General expression of the gyroviscous force. Phys. Plasmas 12 (11), 112301.CrossRefGoogle Scholar
[10]Hinton, F. L. and Wong, S. K. 1985 Neoclassical ion transport in rotating axisymmetric plasmas. Phys. Plasmas 28 (10), 30823098.Google Scholar
[11]Wong, S. K. and Chan, V. S. 2007 Fluid theory of radial angular momentum flux of plasmas in an axisymmetric magnetic field. Phys. Plasmas 14 (11), 112505.CrossRefGoogle Scholar
[12]Connor, J. W., Cowley, S. C., Hastie, R. J. and Pan, L. R. 1987 Toroidal rotation and momentum transport. Plasma Phys. Control. Fusion 29 (7), 919931.CrossRefGoogle Scholar
[13]Solomon, W. M., Burrell, K. H., Andre, R., Baylor, L. R., Budny, R., Gohil, P., Groebner, R. J., Holcomb, C. T., Houlberg, W. A. and Wade, M. R. 2006 Experimental test of the neoclassical theory of impurity poloidal rotation in tokamaks. Phys. Plasmas 13, 056116.CrossRefGoogle Scholar
[14]Stacey, W. M. 2006 Rotation velocities and radial electric field in the plasma edge. Contrib. Plasma Phys. 46 (7–9), 597603.CrossRefGoogle Scholar
[15]Luxon, J. L. 2002 A design retrospective of the DIII-D tokamak. Nucl. Fusion 42, 6114.CrossRefGoogle Scholar
[16]Lao, L. L., St.John, H., Stambaugh, R. D., Kellman, A. G. and Pfeiffer, W. 1985 Reconstruction of current profile parameters and plasma shapes in tokamaks. Nucl. Fusion 25 (11), 16111622.CrossRefGoogle Scholar
[17]Huba, J. D. 2004 NRL Plasma Formulary. Washington, DC: Naval Research Laboratory.CrossRefGoogle Scholar
[18]Sivia, D. S. 1996 Data Analysis: A Bayesian Tutorial (Oxford Science Publications). Oxford, UK: Oxford University Press.Google Scholar
[19]Stacey, W. M. and Bae, C. 2009. Representation of the plasma fluid equations in “Miller equilibrium” analytical flux surface geometry. Phys. Plasmas 16 (8), 082501.CrossRefGoogle Scholar