Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T16:41:32.408Z Has data issue: false hasContentIssue false

A reduced Landau-gyrofluid model for magnetic reconnection driven by electron inertia

Published online by Cambridge University Press:  29 June 2018

E. Tassi*
Affiliation:
Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille 13288, France Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, Laboratoire J.L. Lagrange, Boulevard de l’Observatoire, CS 34229, 06304 Nice CEDEX 4, France
D. Grasso
Affiliation:
Istituto dei Sistemi Complessi - CNR and Dipartimento di Energia, Politecnico di Torino, Torino 10129, Italy
D. Borgogno
Affiliation:
Dipartimento di Energia, Politecnico di Torino, Torino 10129, Italy
T. Passot
Affiliation:
Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, Laboratoire J.L. Lagrange, Boulevard de l’Observatoire, CS 34229, 06304 Nice CEDEX 4, France
P. L. Sulem
Affiliation:
Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, Laboratoire J.L. Lagrange, Boulevard de l’Observatoire, CS 34229, 06304 Nice CEDEX 4, France
*
Email address for correspondence: [email protected]

Abstract

An electromagnetic reduced gyrofluid model for collisionless plasmas, accounting for electron inertia, finite ion Larmor radius effects and Landau-fluid closures for the electron fluid is derived by means of an asymptotic expansion from a parent gyrofluid model. In the absence of terms accounting for Landau damping, the model is shown to possess a non-canonical Hamiltonian structure. The corresponding Casimir invariants are derived and use is made thereof, in order to obtain a set of normal field variables, in terms of which the Poisson bracket and the model equations take a remarkably simple form. The inclusion of perpendicular temperature fluctuations generalizes previous Hamiltonian reduced fluid models and, in particular, the presence of ion perpendicular gyrofluid temperature fluctuations reflects into the presence of two new Lagrangian invariants governing the ion dynamics. The model is applied, in the cold-ion limit, to investigate numerically a magnetic reconnection problem. The Landau damping terms are shown to reduce, by decreasing the electron temperature fluctuations, the linear reconnection rate and to delay the nonlinear island growth. The saturated island width, on the other hand, is independent of Landau damping. The fraction of magnetic energy converted into perpendicular kinetic energy also appears to be unaffected by the Landau damping terms, which, on the other hand, dissipate parallel kinetic energy as well as free energy due to density and electron temperature fluctuations.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beer, M. A. & Hammett, G. W. 1996 Toroidal gyrofluid equations for simulations of tokamak turbulence. Phys. Plasmas 3, 4046.Google Scholar
Boldyrev, S., Horaites, K., Xia, Q. & Perez, J. C. 2013 Toward a theory of astrophysical plasma turbulence at subproton scales. Astrophys. J. 41, 777.Google Scholar
Borgogno, D., Grasso, D., Porcelli, F., Califano, F., Pegoraro, F. & Farina, D. 2005 Aspects of three-dimensional magnetic reconnection. Phys. Plasmas 12, 032309.Google Scholar
Borgogno, D., Perona, A. & Grasso, D. 2017 Test-electron analysis of the magnetic reconnection topology. Phys. Plasmas 24, 122303.Google Scholar
Brizard, A. 1992 Nonlinear gyrofluid description of turbulent magnetized plasmas. Phys. Fluids B 4, 12131228.Google Scholar
Camargo, S. J., Scott, B. D. & Biskamp, D. 1996 The influence of magnetic fluctuations on collisional driftwave turbulence. Phys. Plasmas 3, 3912.Google Scholar
Chacon, L. & Stanier, A. 2016 A scalable, fully implicit algorithm for the reduced two-field low- $\unicode[STIX]{x1D6FD}$ extended MHD model. J. Comput. Phys. 326, 763.Google Scholar
Comisso, L., Grasso, D., Tassi, E. & Waelbroeck, F. L. 2012 Numerical investigation of a compressible gyrofluid model for collisionless magnetic reconnection. Phys. Plasmas 19, 042103.CrossRefGoogle Scholar
Del Sarto, D., Califano, F. & Pegoraro, F. 2003 Secondary instabilities and vortex formation in collisionless-fluid magnetic reconnection. Phys. Rev. Lett. 91, 235001.Google Scholar
Del Sarto, D., Califano, F. & Pegoraro, F. 2006 Electron parallel compressibility in the nonlinear development of two-dimensional collisionless magnetohydrodynamic reconnection. Mod. Phys. Lett. B 20, 931.Google Scholar
Dorland, W. & Hammett, G. W. 1993 Gyrofluid turbulence models with kinetic effects. Phys. Fluids B 5, 812835.Google Scholar
Goswami, P., Passot, T. & Sulem, P. L. 2005 A Landau fluid model for warm collisionless plasmas. Phys. Plasmas 12, 2109.CrossRefGoogle Scholar
Grasso, D., Borgogno, D. & Pegoraro, F. 2007 Secondary instabilities in two- and three-dimensional magnetic reconnection in fusion relevant plasmas. Phys. Plasmas 14, 055703.Google Scholar
Grasso, D., Califano, F., Pegoraro, F. & Porcelli, F. 2001 Phase mixing and saturation in Hamiltonian reconnection. Phys. Rev. Lett. 86, 50515054.Google Scholar
Grasso, D. & Tassi, E. 2015 Hamiltonian magnetic reconnection with parallel heat flux dynamics. J. Plasma Phys. 81, 495810501.Google Scholar
Hammett, G. W., Beer, M. A., Dorland, W., Cowley, S. C. & Smith, S. A. 1993 Developments in the gyrofluid approach to tokamak turbulence simulations. Plasma Phys. Control. Fusion 35, 973.Google Scholar
Hammett, G. W., Dorland, W. & Perkins, F. W. 1992 Fluid models of phase mixing, Landau damping, and nonlinear gyrokinetic dynamics. Phys. Fluids B 4, 2052.Google Scholar
Hammett, G. W. & Perkins, F. W. 1990 Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. Phys. Rev. Lett. 64, 3019.Google Scholar
Hasegawa, A. & Mima, K. 1978 Pseudo-three dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21, 87.Google Scholar
Hasegawa, A. & Wakatani, M. 1983 Plasma edge turbulence. Phys. Rev. Lett. 50, 682.Google Scholar
Hazeltine, R. D., Hsu, C. T. & Morrison, P. J. 1987 Hamiltonian four-field model for nonlinear tokamak dynamics. Phys. Fluids 30, 32043211.Google Scholar
Hazeltine, R. D., Kotschenreuther, M. & Morrison, P. J. 1985 A four-field model for tokamak plasma dynamics. Phys. Fluids 28, 24662477.Google Scholar
Keramidas Charidakos, I., Waelbroeck, F. L. & Morrison, P. J. 2015 A Hamiltonian five-field gyrofluid model. Phys. Plasmas 22, 112113.Google Scholar
Kim, C., Horton, W. & Hamaguchi, H. 1993 New fluid model for the turbulent transport due to the ion temperature gradient. Phys. Plasmas 5, 1516.Google Scholar
Kobayashi, S., Sahraoui, F., Passot, T., Laveder, D., Sulem, P. L., Huang, S. Y., Henri, P. & Smets, R. 2017 Three-dimensional simulations and spacecraft observations of sub-ion scale turbulence in the solar wind: influence of Landau damping. Astrophys. J. 839, 122.CrossRefGoogle Scholar
Laveder, D., Marradi, L., Passot, T. & Sulem, P. L. 2011 Fluid simulations of mirror constraints on proton temperature anisotropy in solar wind turbulence. Geophys. Res. Lett. 38, L7108.CrossRefGoogle Scholar
Loureiro, N. F., Schekochihin, A. A. & Zocco, A. 2013 Fast collisionless reconnection and electron heating in strongly magnetized plasmas. Phys. Rev. Lett. 111, 025002.Google Scholar
Marsden, J. E. & Ratiu, T. S. 2002 Introduction to Mechanics and Symmetry. Springer.Google Scholar
Mattor, N. 1998 Collisionless fluid closure theory and the phase velocity transform. Phys. Plasmas 5, 1822.Google Scholar
Mattor, N. & Parker, S. E. 1997 Nonlinear kinetic fluid equations. Phys. Rev. Lett. 79, 3419.CrossRefGoogle Scholar
Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467521.Google Scholar
Muraglia, M., Agullo, O., Benkadda, S., Garbet, X. & Sen, A. 2009 Nonlinear dynamics of magnetic islands imbedded in small-scale turbulence. Phys. Rev. Lett. 103, 145001.CrossRefGoogle ScholarPubMed
Ng, J., Hakim, A., Bhattacharjee, A., Stanier, A. & Daughton, W. 2017 Simulations of anti-parallel reconnection using a nonlocal heat flux closure. Phys. Plasmas 24, 082112.Google Scholar
Ott, E. & Sudan, R. N. 1969 Nonlinear theory of ion acoustic waves with Landau damping. Phys. Fluids 12, 23882394.CrossRefGoogle Scholar
Passot, T., Henri, P., Laveder, D. & Sulem, P. L. 2014 A fluid approach for ion scale plasmas with weakly distorted magnetic fields. Eur. Phys. J. D 68, 207.Google Scholar
Passot, T. & Sulem, P. L. 2004 A Landau fluid model for dispersive magnetohydrodynamics. Phys. Plasmas 11, 5173.Google Scholar
Porcelli, F. 1991 Collisionless $m=1$ tearing mode. Phys. Rev. Lett. 66, 425.Google Scholar
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182, 310.Google Scholar
Schep, T. J., Pegoraro, F. & Kuvshinov, B. N. 1994 Generalized two-fluid theory of nonlinear magnetic structures. Phys. Plasmas 1, 28432851.Google Scholar
Scott, B. 1997 Three-dimensional computation of drift Alfvén turbulence. Plasma Phys. Control. Fusion 39, 16351668.Google Scholar
Scott, B. D. 2002 The nonlinear drift wave instability and its role in tokamak edge turbulence. New J. Phys. 4, 52.Google Scholar
Scott, B. D. 2010 Derivation via free energy conservation constraints of gyrofluid equations with finite-gyroradius electromagnetic nonlinearities. Phys. Plasmas 17, 102306.Google Scholar
Sharma, P., Hammett, G. W., Quataert, E. & Stone, J. M. 2006 Shearing box simulation of the MRI in a collisionless plasma. Astrophys. J. 637, 952967.Google Scholar
Snyder, P. B. & Hammett, G. W. 2001 A Landau fluid model for electromagnetic plasma microturbulence. Phys. Plasmas 8, 31993216.Google Scholar
Snyder, P. B., Hammett, G. W. & Dorland, W. 1997 Landau fluid models of collisionless magnetohydrodynamics. Phys. Plasmas 4, 3974.CrossRefGoogle Scholar
Strauss, H. R. 1976 Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids 19, 134.Google Scholar
Sulem, P. L. & Passot, T. 2015 Landau fluid closures with nonlinear large-scale finite Larmor radius corrections for collisionless plasmas. J. Plasma Phys. 81, 325810103.Google Scholar
Sulem, P. L., Passot, T., Laveder, D. & Borgogno, D. 2016 Influence of the nonlinearity parameter on the solar wind sub-ion magnetic energy spectrum: FLR-Landau fluid simulations. Astrophys. J. 818, 66.Google Scholar
Tassi, E. 2015 Hamiltonian fluid reductions of electromagnetic drift-kinetic equations for an arbitrary number of moments. Ann. Phys. 362, 239.Google Scholar
Tassi, E. 2016 Hamiltonian reduced fluid model for plasmas with temperature and heat flux anisotropies. Theor. Math. Phys. 188, 1377.Google Scholar
Tassi, E. 2017 Hamiltonian closures in fluid models for plasmas. Eur. Phys. J. D 71, 269.Google Scholar
Tassi, E., Morrison, P. J., Grasso, D. & Pegoraro, F. 2010 Hamiltonian four-field model for magnetic reconnection: nonlinear dynamics and extension to three dimensions with externally applied fields. Nucl. Fusion 50, 034007.CrossRefGoogle Scholar
Tassi, E., Morrison, P. J., Waelbroeck, F. L. & Grasso, D. 2008 Hamiltonian formulation and analysis of a collisionless fluid reconnection model. Plasma Phys. Control. Fusion 50, 085014.Google Scholar
Tassi, E., Passot, T. & Sulem, P. L. 2016 Reduced models accounting for parallel magnetic perturbations: gyrofluid and finite Larmor radius-Landau fluid approaches. J. Plasma Phys. 82, 705820601.Google Scholar
Thiffeault, J. L. & Morrison, P. J. 2000 Classification and Casimir invariants of Lie-Poisson brackets. Physica D 136, 205244.Google Scholar
Waelbroeck, F. L., Hazeltine, R. D. & Morrison, P. J. 2009 A Hamiltonian electromagnetic gyrofluid model. Phys. Plasmas 16, 032109.Google Scholar
Waelbroeck, F. L. & Tassi, E. 2012 A compressible Hamiltonian electromagnetic gyrofluid model. Commun. Nonlinear Sci. Numer. Simul. 17, 2171.Google Scholar
Wang, L., Hakim, A. H., Bhattacharjee, A. & Germaschewski, K. 2015 Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection. Phys. Plasmas 22, 012108.Google Scholar
Zocco, A. & Schekochihin, A. A. 2011 Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas. Phys. Plasmas 18, 102309.Google Scholar