Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T13:36:52.815Z Has data issue: false hasContentIssue false

Reconstruction of global micropulsations in the magnetosphere

Published online by Cambridge University Press:  13 March 2009

M. H. Whang
Affiliation:
Department of Electrical Engineering/Computer Science, Weber Research Institute, Polytechnic University, Farmingdale, New York 11735, U.S.A.
S. P. Kuo
Affiliation:
Department of Electrical Engineering/Computer Science, Weber Research Institute, Polytechnic University, Farmingdale, New York 11735, U.S.A.
M. C. Lee
Affiliation:
Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

Abstract

The coupling of hydromagnetic Alfvén waves is studied numerically in a dipolc-field model of the magnetosphere. The two coupled hydromagnetic equations derived by Radoski are solved as an implicit boundary-value problem, namely the boundary conditions at the magnetopause are determined self-consistently. Thus the calculated wave-field distribution inside the magnetosphere can match all known linear characteristic features of the stormtime Pc5 waves observed on 14/15 November 1979 from satellites. A set of proper boundary conditions is found, excellent agreement between the numerical results and observations is demonstrated. Based on the very limited spatial coverage (L ≈ 6·6 and within a latitudinal region ( −10°, 10°)), of the data provided by the satellites, the theoretical model can successfully reconstruct the global micropulsations in the magnetosphere and identify the source regions of hydromagnetic waves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ames, W. F. 1977 Numerical Methods for Partial Differential Equations, p. 56. Academic.Google Scholar
Chen, L. & Cowley, S. C. 1989 Geophys. Res. Lett. 16, 895.CrossRefGoogle Scholar
Chen, L. & Hasegawa, A. 1974 J. Geophys. Res. 79, 1024 and 1033.Google Scholar
Cheng, C. Z. & Lin, C. S. 1987 Geophys. Res. Lett. 14, 884.CrossRefGoogle Scholar
Dungey, J. W. 1954 Electrodynamics of the Outer Atmosphere. Scientific Report (69. Pennsylvania State University).Google Scholar
Fennel, J. F. 1982 The IMS Source Book, Guide to the International Magnetospheric Study Data Analysis (ed. Russel, C. T. & Southwood, D. J.), p. 65. American Geophysical Union.CrossRefGoogle Scholar
Grobb, R. N. 1975 NOAA Technical Memorandum SEL-42, Space Environment Laboratory, National Oceanic and Atmospheric Administration, Boulder.Google Scholar
Hasegawa, A. 1969 Phys. Fluids, 12, 2642.CrossRefGoogle Scholar
Hasegawa, A. 1971 Phys. Rev. Lett. 27, 11.CrossRefGoogle Scholar
Knott, K. 1982 The IMS Source Book, Guide to the International Magnetospheric Study Data Analysis (ed. Russel, C. T. & Southwood, D. J.), p. 43. American Geophysical Union.CrossRefGoogle Scholar
Kuo, S. P., Lee, M. C. & Wolfe, A. 1987 J. Plasma Phys. 38, 235.CrossRefGoogle Scholar
Ng, P. H., Patel, V. L. & Chan, S. 1984 J. Geophys. Res. 89, 10763.CrossRefGoogle Scholar
Potter, D. 1972 Computational Physics, p. 13. Wiley-Interscience.Google Scholar
Radoski, H. 1967 J. Geophys. Res. 72, 418.Google Scholar
Radoski, H. 1974 J. Geophys. Res. 79, 595.Google Scholar
Radoski, H. 1976 Hydromagnetic Waves: Temporal Development of Coupled Modes. AFGL-TR-76–0104.Google Scholar
Southwood, D. J. 1976 J. Geophys. Res. 81, 3340.Google Scholar
Takahashi, K., Fennel, J. F., Arnata, E. & Higbie, P. R. 1987 J. Geophys. Res. 92, 5857.CrossRefGoogle Scholar
Takahashi, K., Higbie, P. R. & Baber, D. N. 1985 J. Geophys. Res. 90, 1473.CrossRefGoogle Scholar
Walker, A. D. M., Greenwald, R., Korth, A. & Kremser, G. 1982 J. Geophys. Res. 87, 9135.CrossRefGoogle Scholar