Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T02:14:11.147Z Has data issue: false hasContentIssue false

Reconnection and particle acceleration in three-dimensional current sheet evolution in moderately magnetized astrophysical pair plasma

Published online by Cambridge University Press:  10 December 2021

Gregory R. Werner*
Affiliation:
Center for Integrated Plasma Studies, Physics Department, 390 UCB, University of Colorado, Boulder, CO 80309, USA
Dmitri A. Uzdensky
Affiliation:
Center for Integrated Plasma Studies, Physics Department, 390 UCB, University of Colorado, Boulder, CO 80309, USA
*
Email address for correspondence: [email protected]

Abstract

Magnetic reconnection, a plasma process converting magnetic energy to particle kinetic energy, is often invoked to explain magnetic energy releases powering high-energy flares in astrophysical sources including pulsar wind nebulae and black hole jets. Reconnection is usually seen as the (essentially two-dimensional) nonlinear evolution of the tearing instability disrupting a thin current sheet. To test how this process operates in three dimensions, we conduct a comprehensive particle-in-cell simulation study comparing two- and three-dimensional evolution of long, thin current sheets in moderately magnetized, collisionless, relativistically hot electron–positron plasma, and find dramatic differences. We first systematically characterize this process in two dimensions, where classic, hierarchical plasmoid-chain reconnection determines energy release, and explore a wide range of initial configurations, guide magnetic field strengths and system sizes. We then show that three-dimensional (3-D) simulations of similar configurations exhibit a diversity of behaviours, including some where energy release is determined by the nonlinear relativistic drift-kink instability. Thus, 3-D current sheet evolution is not always fundamentally classical reconnection with perturbing 3-D effects but, rather, a complex interplay of multiple linear and nonlinear instabilities whose relative importance depends sensitively on the ambient plasma, minor configuration details and even stochastic events. It often yields slower but longer-lasting and ultimately greater magnetic energy release than in two dimensions. Intriguingly, non-thermal particle acceleration is astonishingly robust, depending on the upstream magnetization and guide field, but otherwise yielding similar particle energy spectra in two and three dimensions. Although the variety of underlying current sheet behaviours is interesting, the similarities in overall energy release and particle spectra may be more remarkable.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aharonian, F. A., Belyanin, A. A., Derishev, E. V., Kocharovsky, V. V. & Kocharovsky, V. V. 2002 Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics. Phys. Rev. D 66 (2), 023005. arXiv:astro-ph/0202229.CrossRefGoogle Scholar
Ball, D., Sironi, L. & Özel, F. 2018 Electron and proton acceleration in trans-relativistic magnetic reconnection: dependence on plasma beta and magnetization. Astrophys. J. 862 (1), 80. arXiv:1803.05556.10.3847/1538-4357/aac820CrossRefGoogle Scholar
Ball, D., Sironi, L. & Özel, F. 2019 The mechanism of electron injection and acceleration in transrelativistic reconnection. Astrophys. J. 884 (1), 57arXiv:1908.05866.10.3847/1538-4357/ab3f2eCrossRefGoogle Scholar
Beresnyak, A. 2017 Three-dimensional spontaneous magnetic reconnection. Astrophys. J. 834 (1), 47. arXiv:1301.7424.10.3847/1538-4357/834/1/47CrossRefGoogle Scholar
Beresnyak, A. 2018 The rate of three-dimensional Hall-MHD reconnection. In J. Phys.: Conf. Ser., J. Phys.: Conf. Ser., vol. 1031, p. 012001. IOP Publishing.10.1088/1742-6596/1031/1/012001CrossRefGoogle Scholar
Bessho, N. & Bhattacharjee, A. 2012 Fast magnetic reconnection and particle acceleration in relativistic low-density electron-positron plasmas without guide field. Astrophys. J. 750, 129.10.1088/0004-637X/750/2/129CrossRefGoogle Scholar
Bessho, N., Chen, L. J., Germaschewski, K. & Bhattacharjee, A. 2015 Electron acceleration by parallel and perpendicular electric fields during magnetic reconnection without guide field. J. Geophys. Res. 120 (11), 93559367.10.1002/2015JA021548CrossRefGoogle Scholar
Boozer, A. H. 2019 Particle acceleration and fast magnetic reconnection. Phys. Plasmas 26 (8), 082112. arXiv:1902.10860.CrossRefGoogle Scholar
Cassak, P. A., Liu, Y. H. & Shay, M. A. 2017 A review of the 0.1 reconnection rate problem. J. Plasma Phys. 83 (5), 715830501. arXiv:1708.03449.10.1017/S0022377817000666CrossRefGoogle Scholar
Cerutti, B., Uzdensky, D. A. & Begelman, M. C. 2012 a Extreme particle acceleration in magnetic reconnection layers: application to the gamma-ray flares in the crab nebula. Astrophys. J. 746, 148. arXiv:1110.0557.10.1088/0004-637X/746/2/148CrossRefGoogle Scholar
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2012 b Beaming and rapid variability of high-energy radiation from relativistic pair plasma reconnection. Astrophys. J. Lett. 754, L33. arXiv:1205.3210.10.1088/2041-8205/754/2/L33CrossRefGoogle Scholar
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2013 Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: an explanation of the crab flares. Astrophys. J. 770, 147. arXiv:1302.6247.10.1088/0004-637X/770/2/147CrossRefGoogle Scholar
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2014 a Gamma-ray flares in the crab nebula: a case of relativistic reconnection? Phys. Plasmas 21 (5), 056501. arXiv:1401.3016.CrossRefGoogle Scholar
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2014 b Three-dimensional relativistic pair plasma reconnection with radiative feedback in the crab nebula. Astrophys. J. 782, 104. arXiv:1311.2605.10.1088/0004-637X/782/2/104CrossRefGoogle Scholar
Christie, I. M., Petropoulou, M., Sironi, L. & Giannios, D. 2018 Radiative signatures of plasmoid-dominated reconnection in blazar jets. Mon. Not. R. Astron. Soc., arXiv:1807.08041.Google Scholar
Comisso, L., Lingam, M., Huang, Y. M. & Bhattacharjee, A. 2017 Plasmoid instability in forming current sheets. Astrophys. J. 850 (2), 142. arXiv:1707.01862.10.3847/1538-4357/aa9789CrossRefGoogle Scholar
Dahlin, J., Drake, J. & Swisdak, M. 2015 Electron acceleration in three-dimensional magnetic reconnection with a guide field. Phys. Plasmas 22 (10), 100704.10.1063/1.4933212CrossRefGoogle Scholar
Dahlin, J., Drake, J. & Swisdak, M. 2016 Parallel electric fields are inefficient drivers of energetic electrons in magnetic reconnection. Phys. Plasmas 23 (12), 120704.10.1063/1.4972082CrossRefGoogle Scholar
Dahlin, J. T., Drake, J. F. & Swisdak, M. 2017 The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection. Phys. Plasmas 24 (9), 092110. arXiv:1706.00481.10.1063/1.4986211CrossRefGoogle Scholar
Daughton, W., Nakamura, T. K. M., Karimabadi, H., Roytershteyn, V. & Loring, B. 2014 Computing the reconnection rate in turbulent kinetic layers by using electron mixing to identify topology. Phys. Plasmas 21 (5), 052307.10.1063/1.4875730CrossRefGoogle Scholar
Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen, B. & Bowers, K. J. 2011 Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. 7 (7), 539542.10.1038/nphys1965CrossRefGoogle Scholar
Daughton, W., Scudder, J. & Karimabadi, H. 2006 Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas 13 (7), 072101.10.1063/1.2218817CrossRefGoogle Scholar
Drake, J., Swisdak, M., Che, H. & Shay, M. 2006 Electron acceleration from contracting magnetic islands during reconnection. Nature 443 (7111), 7553.10.1038/nature05116CrossRefGoogle ScholarPubMed
Guo, F., Li, X., Daughton, W., Kilian, P., Li, H., Liu, Y.-H., Yan, W. & Ma, D. 2019 Determining the dominant acceleration mechanism during relativistic magnetic reconnection in large-scale systems. Astrophys. J. Lett. 879 (2), L23. arXiv:1901.08308.CrossRefGoogle Scholar
Guo, F., Li, X., Daughton, W., Li, H., Kilian, P., Liu, Y.-H., Zhang, Q. & Zhang, H. 2020 Magnetic energy release, plasma dynamics and particle acceleration during relativistic turbulent magnetic reconnection. arXiv:2008.02743.Google Scholar
Guo, F., Li, H., Daughton, W., Li, X. & Liu, Y.-H. 2016 a Particle acceleration during magnetic reconnection in a low-beta pair plasma. Phys. Plasmas 23 (5), 055708. arXiv:1604.02924.10.1063/1.4948284CrossRefGoogle Scholar
Guo, F., Li, H., Daughton, W. & Liu, Y.-H. 2014 Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection. Phys. Rev. Lett. 113, 155005.CrossRefGoogle ScholarPubMed
Guo, F., Li, X., Li, H., Daughton, W., Zhang, B., Lloyd-Ronning, N., Liu, Y.-H., Zhang, H. & Deng, W. 2016 b Efficient production of high-energy nonthermal particles during reconnection in a magnetically dominated ion-electron plasma. Astrophys. J. Lett. 818 (1), L9.CrossRefGoogle Scholar
Guo, F., Liu, Y.-H., Daughton, W. & Li, H. 2015 Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime. Astrophys. J. 806 (2), 167.10.1088/0004-637X/806/2/167CrossRefGoogle Scholar
Hakobyan, H., Petropoulou, M., Spitkovsky, A. & Sironi, L. 2021 Secondary energization in compressing plasmoids during magnetic reconnection. Astrophys. J. 912 (1), 48. arXiv:2006.12530.10.3847/1538-4357/abedacCrossRefGoogle Scholar
Hakobyan, H., Philippov, A. & Spitkovsky, A. 2019 Effects of synchrotron cooling and pair production on collisionless relativistic reconnection. Astrophys. J. 877 (1), 53. arXiv:1809.10772.10.3847/1538-4357/ab191bCrossRefGoogle Scholar
Hesse, M., Kuznetsova, M. & Birn, J. 2001 Particle-in-cell simulations of three-dimensional collisionless magnetic reconnection. J. Geophys. Res. 106 (A12), 2983129842.10.1029/2001JA000075CrossRefGoogle Scholar
Hillas, A. M. 1984 The origin of ultra-high-energy cosmic rays. Annu. Rev. Astron. Astrophys. 22, 425444.CrossRefGoogle Scholar
Hoshino, M. 2020 Stabilization of magnetic reconnection in relativistic current sheet. arXiv:2006.15501.10.3847/1538-4357/aba59dCrossRefGoogle Scholar
Huang, Y.-M., Comisso, L. & Bhattacharjee, A. 2017 Plasmoid instability in evolving current sheets and onset of fast reconnection. Astrophys. J. 849 (2), 75. arXiv:1707.01863.CrossRefGoogle Scholar
Huang, Y.-M., Comisso, L. & Bhattacharjee, A. 2019 Scalings pertaining to current sheet disruption mediated by the plasmoid instability. Phys. Plasmas 26 (9), 092112. arXiv:1909.02970.CrossRefGoogle Scholar
Jaroschek, C. H. & Hoshino, M. 2009 Radiation-dominated relativistic current sheets. Phys. Rev. Lett. 103 (7), 075002.10.1103/PhysRevLett.103.075002CrossRefGoogle ScholarPubMed
Jaroschek, C. H., Treumann, R. A., Lesch, H. & Scholer, M. 2004 Fast reconnection in relativistic pair plasmas: analysis of particle acceleration in self-consistent full particle simulations. Phys. Plasmas 11, 11511163.CrossRefGoogle Scholar
Ji, H., Alt, A., Antiochos, S., Baalrud, S., Bale, S., Bellan, P.M., Begelman, M., Beresnyak, A., Blackman, E.G., Brennan, D., et al. 2019 Major scientific challenges and opportunities in understanding magnetic reconnection and related explosive phenomena throughout the universe. B. Bull. Am. Astron. Soc. 51 (3), 5.Google Scholar
Kagan, D., Milosavljević, M. & Spitkovsky, A. 2013 A flux rope network and particle acceleration in three-dimensional relativistic magnetic reconnection. Astrophys. J. 774, 41. arXiv:1208.0849.CrossRefGoogle Scholar
Kilian, P., Li, X., Guo, F. & Li, H. 2020 Exploring the acceleration mechanisms for particle injection and power-law formation during transrelativistic magnetic reconnection. Astrophys. J. 899 (2), 151. arXiv:2001.02732.10.3847/1538-4357/aba1e9CrossRefGoogle Scholar
Kirk, J. G. & Skjæraasen, O. 2003 Dissipation in poynting-flux-dominated flows: the $\sigma$-problem of the crab pulsar wind. Astrophys. J. 591, 366379. arXiv:astro-ph/0303194.CrossRefGoogle Scholar
Lapenta, G., Goldman, M. V., Newman, D. L. & Markidis, S. 2017 Energy exchanges in reconnection outflows. Plasma Phys. Control. Fusion 59 (1), 014019. arXiv:1607.00535.CrossRefGoogle Scholar
Lapenta, G., Goldman, M., Newman, D., Markidis, S. & Divin, A. 2014 Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnectiona). Phys. Plasmas 21 (5), 055702. arXiv:1402.0082.10.1063/1.4872028CrossRefGoogle Scholar
Lapenta, G., Krauss-Varban, D., Karimabadi, H., Huba, J. D., Rudakov, L. I. & Ricci, P. 2006 Kinetic simulations of x-line expansion in 3D reconnection. Geophys. Res. Lett. 33 (10), L10102.10.1029/2005GL025124CrossRefGoogle Scholar
Lapenta, G., Pucci, F., Goldman, M. V. & Newman, D. L. 2020 Local regimes of turbulence in 3D magnetic reconnection. Astrophys. J. 888 (2), 104. arXiv:1910.12067.10.3847/1538-4357/ab5a86CrossRefGoogle Scholar
Lazarian, A., Eyink, G. L., Jafari, A., Kowal, G., Li, H., Xu, S. & Vishniac, E. T. 2020 3D turbulent reconnection: theory, tests, and astrophysical implications. Phys. Plasmas 27 (1), 012305. arXiv:2001.00868.10.1063/1.5110603CrossRefGoogle Scholar
Lazarian, A., Kowal, G., Takamoto, M., de Gouveia Dal Pino, E. M. & Cho, J. 2016 Theory and applications of non-relativistic and relativistic turbulent reconnection. In Magnetic Reconnection: Concepts and Applications (ed. W. Gonzalez & E. Parker), Astrophysics and Space Science Library, vol. 427, chap. 11, p. 409. Springer.CrossRefGoogle Scholar
Lazarian, A. & Vishniac, E. T. 1999 Reconnection in a weakly stochastic field. Astrophys. J. 517 (2), 700718. arXiv:astro-ph/9811037.10.1086/307233CrossRefGoogle Scholar
Le, A., Daughton, W., Ohia, O., Chen, L. J., Liu, Y. H., Wang, S., Nystrom, W. D. & Bird, R. 2018 Drift turbulence, particle transport, and anomalous dissipation at the reconnecting magnetopause. Phys. Plasmas 25 (6), 062103. arXiv:1802.10205.CrossRefGoogle Scholar
Le, A., Stanier, A., Daughton, W., Ng, J., Egedal, J., Nystrom, W. D. & Bird, R. 2019 Three-dimensional stability of current sheets supported by electron pressure anisotropy. Phys. Plasmas 26 (10), 102114. arXiv:1910.02848.10.1063/1.5125014CrossRefGoogle Scholar
Li, X., Guo, F., Li, H., Stanier, A. & Kilian, P. 2019 Formation of power-law electron energy spectra in three-dimensional low-β magnetic reconnection. Astrophys. J. 884 (2), 118. arXiv:1909.01911.CrossRefGoogle Scholar
Liu, Y.-H., Daughton, W., Karimabadi, H., Li, H. & Peter Gary, S. 2014 Do dispersive waves play a role in collisionless magnetic reconnection? Phys. Plasmas 21 (2), 022113.10.1063/1.4865579CrossRefGoogle Scholar
Liu, Y.-H., Guo, F., Daughton, W., Li, H. & Hesse, M. 2015 Scaling of magnetic reconnection in relativistic collisionless pair plasmas. Phys. Rev. Lett. 114 (9), 095002.10.1103/PhysRevLett.114.095002CrossRefGoogle ScholarPubMed
Liu, Y.-H., Hesse, M., Guo, F., Daughton, W., Li, H., Cassak, P. A. & Shay, M. A. 2017 Why does steady-state magnetic reconnection have a maximum local rate of order 0.1? Phys. Rev. Lett. 118 (8), 085101. arXiv:1611.07859.10.1103/PhysRevLett.118.085101CrossRefGoogle ScholarPubMed
Liu, W., Li, H., Yin, L., Albright, B. J., Bowers, K. J. & Liang, E. P. 2011 Particle energization in 3D magnetic reconnection of relativistic pair plasmas. Phys. Plasmas 18 (5), 052105. arXiv:1005.2435.10.1063/1.3589304CrossRefGoogle Scholar
Lyubarsky, Y. & Liverts, M. 2008 Particle acceleration in the driven relativistic reconnection. Astrophys. J. 682, 14361442. arXiv:0805.0085.CrossRefGoogle Scholar
Markidis, S., Lapenta, G., Divin, A., Goldman, M., Newman, D. & Andersson, L. 2012 Three dimensional density cavities in guide field collisionless magnetic reconnection. Phys. Plasmas 19 (3), 032119. arXiv:1203.2248.10.1063/1.3697976CrossRefGoogle Scholar
Mehlhaff, J. M., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2020 Kinetic beaming in radiative relativistic magnetic reconnection: a mechanism for rapid gamma-ray flares in jets. Mon. Not. R. Astron. Soc. 498 (1), 799820. arXiv:2002.07243.CrossRefGoogle Scholar
Melzani, M., Walder, R., Folini, D., Winisdoerffer, C. & Favre, J. M. 2014 The energetics of relativistic magnetic reconnection: ion-electron repartition and particle distribution hardness. Astron. Astrophys. 570, A112.10.1051/0004-6361/201424193CrossRefGoogle Scholar
Muñoz, P. A. & Büchner, J. 2018 Kinetic turbulence in fast three-dimensional collisionless guide-field magnetic reconnection. Phys. Rev. E 98 (4), 043205. arXiv:1705.01054.10.1103/PhysRevE.98.043205CrossRefGoogle Scholar
Nakamura, T. K. M., Daughton, W., Karimabadi, H. & Eriksson, S. 2013 Three-dimensional dynamics of vortex-induced reconnection and comparison with THEMIS observations. J. Geophys. Res. 118 (9), 57425757.CrossRefGoogle Scholar
Nalewajko, K., Uzdensky, D. A., Cerutti, B., Werner, G. R. & Begelman, M. C. 2015 On the distribution of particle acceleration sites in plasmoid-dominated relativistic magnetic reconnection. Astrophys. J. 815 (2), 101.CrossRefGoogle Scholar
Petropoulou, M. & Sironi, L. 2018 The steady growth of the high-energy spectral cut-off in relativistic magnetic reconnection. Mon. Not. R. Astron. Soc. 481 (4), 5687. arXiv:1808.00966.CrossRefGoogle Scholar
Pritchett, P. L. & Coroniti, F. V. 2001 Kinetic simulations of 3-D reconnection and magnetotail disruptions. Earth Planets Space 53, 635643.CrossRefGoogle Scholar
Pritchett, P. L. & Coroniti, F. V. 2004 Three-dimensional collisionless magnetic reconnection in the presence of a guide field. J. Geophys. Res. 109 (A1), A01220.Google Scholar
Pucci, F., Matthaeus, W. H., Chasapis, A., Servidio, S., Sorriso-Valvo, L., Olshevsky, V., Newman, D. L., Goldman, M. V. & Lapenta, G. 2018 Generation of turbulence in colliding reconnection jets. Astrophys. J. 867 (1), 10. arXiv:1810.13318.CrossRefGoogle Scholar
Pucci, F. & Velli, M. 2014 Reconnection of quasi-singular current sheets: the “ideal” tearing mode. Astrophys. J. Lett. 780, L19.10.1088/2041-8205/780/2/L19CrossRefGoogle Scholar
Rowan, M. E., Sironi, L. & Narayan, R. 2017 Electron and proton heating in transrelativistic magnetic reconnection. Astrophys. J. 850 (1), 29. arXiv:1708.04627.CrossRefGoogle Scholar
Rowan, M. E., Sironi, L. & Narayan, R. 2019 Electron and proton heating in transrelativistic guide field reconnection. Astrophys. J. 873 (1), 2. arXiv:1901.05438.CrossRefGoogle Scholar
Schoeffler, K. M., Grismayer, T., Uzdensky, D., Fonseca, R. A. & Silva, L. O. 2019 Bright gamma-ray flares powered by magnetic reconnection in QED-strength magnetic fields. Astrophys. J. 870 (1), 49. arXiv:1807.09750.CrossRefGoogle Scholar
Sironi, L. & Beloborodov, A. M. 2020 Kinetic simulations of radiative magnetic reconnection in the coronae of accreting black holes. Astrophys. J. 899 (1), 52. arXiv:1908.08138.CrossRefGoogle Scholar
Sironi, L., Giannios, D. & Petropoulou, M. 2016 Plasmoids in relativistic reconnection, from birth to adulthood: first they grow, then they go. Mon. Not. R. Astron. Soc. 462, 4874. arXiv:1605.02071.10.1093/mnras/stw1620CrossRefGoogle Scholar
Sironi, L., Petropoulou, M. & Giannios, D. 2015 Relativistic jets shine through shocks or magnetic reconnection? Mon. Not. R. Astron. Soc. 450, 183. arXiv:1502.01021.CrossRefGoogle Scholar
Sironi, L. & Spitkovsky, A. 2011 Acceleration of particles at the termination shock of a relativistic striped wind. Astrophys. J. 741, 39. arXiv:1107.0977.CrossRefGoogle Scholar
Sironi, L. & Spitkovsky, A. 2014 Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. Lett. 783, L21. arXiv:1401.5471.CrossRefGoogle Scholar
Stanier, A., Daughton, W., Le, A., Li, X. & Bird, R. 2019 Influence of 3D plasmoid dynamics on the transition from collisional to kinetic reconnection. Phys. Plasmas 26 (7), 072121. arXiv:1906.04867.CrossRefGoogle Scholar
Takamoto, M. 2018 Evolution of three-dimensional relativistic current sheets and development of self-generated turbulence. Mon. Not. R. Astron. Soc. 476 (3), 42634271. arXiv:1802.07549.CrossRefGoogle Scholar
Takamoto, M., Inoue, T. & Lazarian, A. 2015 Turbulent reconnection in relativistic plasmas and effects of compressibility. Astrophys. J. 815 (1), 16. arXiv:1509.07703.CrossRefGoogle Scholar
Tenerani, A., Velli, M., Pucci, F., Landi, S. & Rappazzo, A. F. 2016 ‘Ideally’ unstable current sheets and the triggering of fast magnetic reconnection. J. Plasma Phys. 82 (5), 535820501. arXiv:1608.05066.CrossRefGoogle Scholar
Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G. D., et al. 2014 XSEDE: accelerating scientific discovery. Comput. Sci. Engng 16 (5), 62.CrossRefGoogle Scholar
Uzdensky, D. A. 2020 Relativistic nonthermal particle acceleration in two-dimensional collisionless magnetic reconnection. arXiv:2007.09533.Google Scholar
Uzdensky, D. A., Cerutti, B. & Begelman, M. C. 2011 Reconnection-powered linear accelerator and gamma-ray flares in the crab nebula. Astrophys. J. Lett. 737, L40. arXiv:1105.0942.CrossRefGoogle Scholar
Uzdensky, D. A. & Loureiro, N. F. 2016 Magnetic reconnection onset via disruption of a forming current sheet by the tearing instability. Phys. Rev. Lett. 116 (10), 105003. arXiv:1411.4295.CrossRefGoogle ScholarPubMed
Uzdensky, D. A., Loureiro, N. F. & Schekochihin, A. A. 2010 Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105, 235002.CrossRefGoogle ScholarPubMed
Wendel, D. E., Olson, D. K., Hesse, M., Aunai, N., Kuznetsova, M., Karimabadi, H., Daughton, W. & Adrian, M. L. 2013 The relation between reconnected flux, the parallel electric field, and the reconnection rate in a three-dimensional kinetic simulation of magnetic reconnection. Phys. Plasmas 20 (12), 122105.CrossRefGoogle Scholar
Werner, G. R., Philippov, A. A. & Uzdensky, D. A. 2019 Particle acceleration in relativistic magnetic reconnection with strong inverse-Compton cooling in pair plasmas. Mon. Not. R. Astron. Soc. 482 (1), L60L64. arXiv:1805.01910.10.1093/mnrasl/sly157CrossRefGoogle Scholar
Werner, G. R. & Uzdensky, D. A. 2017 Nonthermal particle acceleration in 3D relativistic magnetic reconnection in pair plasma. Astrophys. J. Lett. 843, L27. arXiv:1705.05507.CrossRefGoogle Scholar
Werner, G. R., Uzdensky, D. A., Begelman, M. C., Cerutti, B. & Nalewajko, K. 2018 Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection. Mon. Not. R. Astron. Soc. 473, 48404861. arXiv:1612.04493.10.1093/mnras/stx2530CrossRefGoogle Scholar
Werner, G. R., Uzdensky, D. A., Cerutti, B., Nalewajko, K. & Begelman, M. C. 2016 The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas. Astrophys. J. Lett. 816, L8. arXiv:1409.8262.10.3847/2041-8205/816/1/L8CrossRefGoogle Scholar
Yamada, M., Kulsrud, R. & Ji, H. 2010 Magnetic reconnection. Rev. Mod. Phys. 82 (1), 603.10.1103/RevModPhys.82.603CrossRefGoogle Scholar
Yin, L., Daughton, W., Karimabadi, H., Albright, B. J., Bowers, K. J. & Margulies, J. 2008 Three-dimensional dynamics of collisionless magnetic reconnection in large-scale pair plasmas. Phys. Rev. Lett. 101 (12), 125001.10.1103/PhysRevLett.101.125001CrossRefGoogle ScholarPubMed
Zenitani, S. & Hesse, M. 2008 The role of the Weibel instability at the reconnection jet front in relativistic pair plasma reconnection. Phys. Plasmas 15 (2), 022101. arXiv:0712.1963.CrossRefGoogle Scholar
Zenitani, S., Hesse, M. & Klimas, A. 2009 Two-fluid magnetohydrodynamic simulations of relativistic magnetic reconnection. Astrophys. J. 696 (2), 13851401. arXiv:0902.2074.CrossRefGoogle Scholar
Zenitani, S. & Hoshino, M. 2001 The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. Lett. 562, L63L66. arXiv:1402.7139.CrossRefGoogle Scholar
Zenitani, S. & Hoshino, M. 2005 a Relativistic particle acceleration in a folded current sheet. Astrophys. J. Lett. 618, 111114. arXiv:astro-ph/0411373.10.1086/427873CrossRefGoogle Scholar
Zenitani, S. & Hoshino, M. 2005 b Three-dimensional evolution of a relativistic current sheet: triggering of magnetic reconnection by the guide field. Phys. Rev. Lett. 95 (9), 095001. arXiv:astro-ph/0505493.CrossRefGoogle ScholarPubMed
Zenitani, S. & Hoshino, M. 2007 Particle acceleration and magnetic dissipation in relativistic current sheet of pair plasmas. Astrophys. J. 670, 702726. arXiv:0708.1000.10.1086/522226CrossRefGoogle Scholar
Zenitani, S. & Hoshino, M. 2008 The role of the guide field in relativistic pair plasma reconnection. Astrophys. J. 677, 530544. arXiv:0712.2016.10.1086/528708CrossRefGoogle Scholar
Zhang, H., Sironi, L. & Giannios, D. 2021 Fast particle acceleration in three-dimensional relativistic reconnection. arXiv:2105.00009.CrossRefGoogle Scholar
Zhou, X., Büchner, J., Widmer, F. & Muñoz, P. A. 2018 Electron acceleration by turbulent plasmoid reconnection. Phys. Plasmas 25 (4), 042904. arXiv:1806.10665.10.1063/1.5011013CrossRefGoogle Scholar
Zhou, M., Loureiro, N. F. & Uzdensky, D. A. 2020 Multi-scale dynamics of magnetic flux tubes and inverse magnetic energy transfer. J. Plasma Phys. 86 (4), 535860401. arXiv:2001.07291.CrossRefGoogle Scholar
Zweibel, E. G. & Yamada, M. 2009 Magnetic reconnection in astrophysical and laboratory plasmas. Annu. Rev. Astron. Astrophys. 47, 291332.10.1146/annurev-astro-082708-101726CrossRefGoogle Scholar